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sional modern control theory, intuition for what can be accomplished
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ANALYSIS OF THE DYNAMIC BEHAVIOR OF AN INTENSE

CHARGED PARTICLE BEAM USING THE SEMIGROUP APPROACH

I. Introduction

Specific Area of Research

This investigation is concerned with the problem of controlling a
physical system which is most naturally described by a set of partial
differential equations (PDE). The many successes in the application
of the "state variable' or 'modern control theory'' approach to systems
of linear ordinary differential equations (ODE) have 1led many
researchers to look for a practical extension of this theory to accom-
modate systems of linear PDE. As recently as 1978, however, a promi-
nent researcher observed (Russell, 1978:640): '"The control theory of
partial differential equations has followed right on the heels of that
for ordinary differential equations, but with slower and heavier
tread."

Models for many physical systems can be brought into the form of

an  abstract Cauchy problem. Let X be a Banach space, and suppose A

is a linear operator from a subset of X into X . If the domaln of A
1s dense in X, then the equation
nlt) = Au(e) £>0
I-1
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and is denoted by SF\(. Existence of the Gateaux derivative of F at -

[

x does not imply continuity of the operator F,
On the other hand, one can generalize the derivative of an

operator in a manrer which mimics the "differentiability implies

La a a4 a4 o do

continuity™ property of the usual derivative, Suppose for some

WD AT

A
, an open subset of D(F), there exists a SF‘{aB(X,Y) such

that

[T P

lim HF(}H-h) - F(x) - dAFX(h)“Y
alf >0 bl

f iy

The operator :TF‘( is termed the Frechet derivative of F at x, and

the existence of this derivative implies continuity of F at x
A
(Luenberger, 1969: 173). Furthermore, existence of 5FX implies

A

existence of 5F\< and the two are equal in this case.

The Gateaux and Frechet derivatives are often used to construct a

M T Sl W §

linear approximation of a nonlinear operator. The procedure is

f vaus

analagous to the familiar first-order Taylor series linearization
techniques for a real function of a real variable,

Consider next a function u:I-+X, where I 1is an interval

ORI

(possibly infinite) of the real line, and X is a Banach space. Ir

Lk

the Frechet derivative of u att 1 exists, then this operator is

called the strong derivative of u at £, For this special case, the
A

cumbersome Frechet derivative notation aSut is replaced with the
0

d .
usual differentiation symbols Ec_u(tc) or u(t ).
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where k=(k,,k,,... kn) , the ki being nonnegative integers, and,

n
W= L
i=1

Unless stated otherwise, use of the usual differentiation symbols DX
k
indicates a generalized derivative, Various functional

wr

or

(o9}

x

analysis texts cover generalized derivatives in detail (also known as
distributioral, and, more generally, as weak derivatives), See
(Curtain and Pritchard, 1977: 136-138; Yosida, 1968: 48-52), for
example,

Consider now an operator F (not necessaily linear) with domain
D(F) a subspace of a normed linear space, X, and range contained in
a normed linear space Y. Two generalizations of the derivative of a
real function of a real variable are possible, where an appropriate
topological generalization of R is assigned.

First, consider

lim F(x+hv) - F(x)
h->0 h

where x, veD(F) , and heR, If the limit exists for every veD(F),
then the operator F is said to be Gateaux differentiable at x . In
this case, the limit above defines a unique element in Y for every

ve D(F)Y , This mapping is called the Gateaux derivative of F at x

II-7
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denoted by €(X,Y), or by C€(X) if X=Y . For examples and further
di scussiong of closed operators the reader is referred to (Curtain and
Pritchard, 1977: 45; Belleni-Morante, 1979: 60-63; Taylor and Lay,

1980: 208-21T).

Derivatives, Various generalizations of the usual derivative of
a real function of a real variable exist, depending on the topological
properties assigned to the underlying spaces, Three specific types of
derivatives are of use in the application of semigroup theory:
(1) generalized derivatives, (2) Gateaux derivatives, and (3) Frechet
derivatives, The Frechet derivative of a function whose domain is an
interval of the real line is known as a strong derivative, Since the
strong derivative is frequently used in semigroup theory, it is also
discussed below,

Let C () denote the set of all functions ¢ which are
continuous, have continuous partial derivatives of any order, and
which have support bounded and contained in Q, ‘an open subset of Rn.
The generalized derivative of any function fELioc("Q) ( f only
"locally" belongs to LI(Q) y i.e., f is defined on Q and is in
L' (K) for every Lebesgue measurable set K whose closure is
contained in ), if it exists, is defined to be the funetion g such

that
k k
/}(X)D 2 (x)dx = (-1) J[g(X)b(X)dx
~ o
for all ?=C (Z) . The differentiation operator Dk is defined as

I1-6
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the following two statements hold (Naylar and Sell, 1982: 240):

(i) If T is continuous at any point x X, then it is

continuous at every x€X,

(ii) T is bounded if and only if it is continucus,

Al though bounded linear operators are simpler to analyze,
unbounded linear operators frequently appear in applications, The
"derivative" operator, for example, is often unbounded, depending upon
the domain and codomain chosen for a specific model. In some cases an
unbounded 1linear operator enjoys properties similar to those of a
continuous one, in which case it is termed a ¢closed operator. The
definition of a closed operator is often stated in terms of its graph,
but an equivalent and more practical definition, in the context of

metric spaces, is the following:

Definition 2,2 (Closed Qperator)

Let T:D(T)CX>Y be an operator with X, Y Banach spaces,
Suppo se txn} is a sequence in D(T) with the properties

(1) X TX
(i1) Tx -y

The operator T is closed if x€D(T) and Tx=y for every
such sequence in D(T),

The set of all closed linear operators defined on a subset of the

Banach spez2e X and with range contained in the Banach space Y is

II-5

e, TR A AP SURE R U, WP S AP T L. UV L U A T U VUL ol ST ST S DU, S S O PR R

Y

. me e

et gd Lt

LT A X vt 3 WY O o W L LI Y T

b cbacmadk . Hhd

e,

I YU




AJ e _— R i Y N T T W N TN ey WY ARl vl bl aadt Sul sl Nad solh 2o aadh Sad Al sad el seol

r

r

L |

N

X are coprcto Ty uiedul dnoepplications,  The dntorvel 1 iypicolly .

reproesoipte o volunn of Livs, while the Rorocl spoee X o dis moot of fon o 4

<. - I . Coe . . . N . B c .. .. o S

space  of fwo loens (eopn, L0 () o pl (:)y). Suisre u  conotbes i

steh woreppiveg (doo,, w:iICEX ¥.firition >

2.1, uw is continucus of t el if for every >0 thore ernlstc e 8 i

cuch that :

! { i-

lll(l) - u (t ),\. T -

a -

a

5 n B} o e -

Tor &L 007 saticlying g

k

‘, , N

— A N

it i, | & j

5-1!

In ¢ oML L ey erires from v o dntortcl T of tre el |

1

1 - [ i 3 sedi G £o i \

i RS aer; . : ) { i I Ui OO0 Lm0 ey 1 [aRe: |

]

- T -_— ~ P ‘

. coftiy L S T A St S EN AU S AN PR RSN I AT AT R AP ULt -

o0
o) o RN JorioonorTyy tn, Teien )y et
i ' | , : i . i Y ‘ . .
(e PR R (i L Oy i coanvld
rt : . PR i [ OV
\ (1 vty

) P




PL YRR WY

Linear Qperators on Banach Spaces. There are several key

concepts involving linear operators whose domains and codomains are
subsets of normed spaces., A bounded linear operator T:X-»Y , X, Y
Banach spaces, 1is one for which a nonnegative real number K exists

such that
Ire]l, < xllehy

for all fcX, The set of all bounded linear operators from X into Y
is itself a Banach space and is denoted by B(X,Y) , or, if X=Y, by
B(X) , The infimum of the set of all constants K satisfying the

above inequality is the norm of T on the Banach space B(X,Y) or

B(X) ,

Continuity, The notion of continuity of a funection is
fundamental in semigroup theory analysis, The following definition is

sufficiently general for subsequent discussions:

Definition 2.1 (Contipuity)

Let X, Y ©be normed 1linear spaces, and suppose F
represents a function from a subset D of X into Y =—
i.e,, F:DCX>Y , F 1is said to be contiguous at the point

X, in D if for every real number €>0 there exists a real

number & such that

”F(X) - F(xo)”Y <€

for all x<D satisfying

”X - xo“X <8

Mappings from an interval I on the real lire into a Banach space

II-3
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Various linear spaces are used in this work., The set of real
numbers and the set of complex numbers are symbolized by R and C,
respectively, and these are the only scalar fields used, The symbols
R™ and C" denote n-fold Cartesian products of the linear spaces R
and C (with the usual addition and scalar multiplication
definitions), The letters I and { are used to mean an interval of
R or R™, respectively, either finite or infinite — 4i,e,,

I = (a,b)(R, and Q={x€Rn:x=(x .. X ),a.<x.<b.,i=l...n}CRn
n i it q

B

with a , ai&:R or -», and b,bieR or +», Occasionally Cartesian

products of linear spaces are denoted by the product symbol, I ., R

Specifically, letting {xi}ri’= be a set of linear spaces, the

1

n
Cartesian product of these spaces is written as 'Hlxi' The most
1=

SRR ) DO

common function spaces wused in this report are the Lebesgue and

Sobolev spaces, Lp(Q) and Hq(Q). The LP spaces consist of

ala g

5 g

(equivalence classes of) functions f such that ]fl Pis integrable in y
the Lebesgue sense, The Sobolev spaces, Hq(Q) , consist of the sets 4
of functions f whose generalized derivatives (discussed below) up to :
and including order q are in L?(Q) . For further discussion of :[1
Lebesgue and Sobolev spaces, the reader is referred to (Royden, 1968: :.1‘
Ch 6) and (Yosida, 1968: 55), respectively, The Sobolev spaces are q

Hilbert spaces for all integer q>0, as is L?(Q) , and LP@) is a

A N

v

Banach space for all integer p>1., The norm of a function f in these

LN
Aekd Lodod

normed spaces, or any other normed space, is symbolized by "f “X
where X represents the space, or by "fll , if it is clear which space

is intended.

. - -,
B PR S
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II, Pertinent Results from Operator Semigroup Theory

Introduction

Some known results from the semigroup theory of operators
(hereaf'ter referred to as semigroup theory) are now presented. The
theory has been rigorously developed by Hille and Phillips (1957).
More recent texts have been written which emphasize the practical
aspects of the theory (Butzer and Berens, 1967; Belleni-Morante, 1979;
Curtain and Pritchard, 1977; Curtain and Pritchard, 1978; Davies,
1980; Fattorini, 1983; Pazy, 1983; Walker, 1980). The intent of this
chapter 1is to state notation, definitions, and specific results
pertaining to semigroup theory and the abstract Cauchy problem which
are relevant to an analysis of the beam models developed in the

following chapter,

Fundamental Notation and Defipitions

Functions and Spaces, Let A, B be arbitrary sets. The notation
f:A>B 13 used to denote a function f with domain D(f) equal to A ,
and range R(f) a subset o the codomain, B. The term operator is

used to denote any function whose domain or codomain (or both) is a

space of functions,

II-1
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these readers should follow the remaining chapters with little diffi-
culty.

Chapter III introduces various dynamic models of charged particle
beams. The sophisticated 'microscopic' models are presented first,
and a linearization is performed in order to bring this class of mod-
els into the abstract Cauchy problem form. ''Macroscopic' descriptions
are then discussed in general, and a linear, single degree of freedom
model 1is derived. Finally, a tractable model is developed in detail
in order to illustrate semigroup theory techniques analytically.

An analytical solution of the '"electrostatic approximation model"

is thoroughly developed in Chapter IV, Various simplifying assump-
tions are introduced in Chapter III in the development of this model
which would not necessarily be required if a numerical solution were
sought. It is considered far more useful from a researcher's point of
view, however, to develop a closed-form solution to the electrostatic
approximation model thoroughly than to resort to a numerical solution

of a more complicated model.

A summary of dissertation research results is presented in the
concluding chapter, along with some suggested further areas of

research.
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nuclear fusion research has been treated in a manner similar to that
herein (cf. Wang and Janos, 1970). The plasma confinement problem
differs considerably from the beam dynamics problem, however. The
plasma in Wang's work is assumed to be neutral, while a charged parti-
cle beam 1is a nonneutral plasma. Furthermore, the configuration of
the plasma confinement problem does not at all match that of the beam
problem, where a large velocity field in one direction 1s assumed.
Nonetheless, the starting point for both plasma confinement in Wang's
paper and the beam dynamics analysis in this dissertation 1is the

Vlasov-Maxwell system of equations.

Three major topics are presented in the sequel: (1) a summary of
relevant mathematical concepts, (2) a description of various mathe-
matical models of the dynamics of a charged particle beam, and (3) an
illustration of the theory.

The purpose of Chapter II1 is twofold. First, it provides readers
with functional analysis and operator semigroup theory in their back-
grounds a summary of notation, definitions, and results in these
areas., Second, readers of this chapter with finite-dimensional modern
control theory in their backgrounds are provided a glimpse of how the
finite-dimensional theory generalizes to the icfinite-dimensional the-
ory. For example, a real matrix operator of order 1 is discussed as a
special case in the subsection "Some Familiar Operators.' Armed with

these insights, and intuition provided by finite-dimensional theory,
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primary goal of this dissertation is to advance the development of

semigroup theory techniques by attacking a specific initial value

problem: the dynamic behavior of an intense charged particle beam.
Intense beams of charged particles are beginning to be used in a

wide variety of applications (Septier, 1983: xii). The dynamic behav-

ior of such beams is quite complex because electromagnetic fields are 1
affected by not only the positions of the particles, but by their
velocities as well. Frequently the Vlasov-Maxwell system of PDE 1is
chosen as a starting point for analysis of a collection of charged
particles. Simplifying assumptions are often appropriate, but the
resulting models are generally systems of PDE also. Analysis of the
dynamic behavior of intense charged particle beams is an excellent
choice, then, for an application of semigroup theory since (1) such

beams are useful, and, (2) models of these beams are inherently dis-

tributed parameter systems of equations.

This dissertation establishes a framework for analyzing the beam
dynamics problem. In the figure on page I-5 the basic problem 1is
divided into two sub-problems? (1) the control problem, which is con-
cerned with modifying the dynamic behavior to achieve some desired
state, and (2) the observation problem, which is concerned with deter-
mining the present state of the beam. The foundation laid in this
work is original and should serve to direct and organize beam dyamics
research in the future.

Some articles exist in the literature which are related to this

research. For example, the plasma confinement problem associated with
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Qe

A = ZAk(x)%-;k + B(x)

k=1

and where Ak(X) = {a?j(x)} and B(x) = {Bij(x)}are nth-qwder
matrix functions defined in R"™,

It has been shown that ordinary, partial, stochastic, and delay
differential equations can all be accommodated by the application of
semigroup theory to initial value problems on a Banach space (Curtain
and Pritchard, 1978: Ch 8). Belleni-Morante (Belleni-Morante, 1979:
Ch 8-13) discusses in detail the following specific problems: heat
conduction in rigid bodies, one-speed neutron transport, kinetic
theory of vehicular traffic, the telegraphic and wave equations, the
one-dimensional Schrdodinger equation, and stochasticec population
theory. Additionally, Markov processes were studied from the
semigroup theary point of view by Hille, Yosida and Feller in the
early 1950's (Fattorini, 1983: 98). These examples, and many others
that can be found in the recent literature, illustrate the wide
variety of physical problems that can be formulated and analyzed
within the context of semigroup theory.

This diversity of applications is encouraging, but far more
practical applications are needed, Fattorini (Fattorini, 1983: xx)
states, "Nowadays, many volumes devoted ... to the treatment of
semigroup theory exist,,., In contrast, accounts of the applications to
particular partial differential equations ,.. are scarcer.,," This

suggests that more applications should be attempted in order for the

theory to develop into a practical, working body of knowledge. The
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along with an initial condition,

u(0) = u?’

is termed an abstract Cauchy problem,

Analysis of the abstract Cauchy problem can be performed with the
semigroup theory of operators. This approach has many parallels with
the modern control theory approach to systems of 1linear, time

invariant, first-order ordinary differential equations:
x(t) = Ax(t) t>0

where A is ann by n real matrix, For example, the state transition
matrix, eAt , for such a system of ODE, is an element of a semigroup
of operators {eAt} generated by A, where t>0, Another parallel
exists in that the semigroup theory emphasizes spectral properties of
the operator A in the abstract Cauchy problem, This is, of course,
analogous to the modern control theory emphasis on the eigenvalues and
eigenvectors of the matrix A , These parallels provide a compelling
case for considering an appropriate extension of modern control theory
to be analysis of the abstract Cauchy problem through the semigroup
theory of operators, This point of view is adopted in the present
work,

Only linear systems of partial differential equations are
considerad berein., In fact, all models are of the form

g—tw(x,t) = Aw(x,t)

where w(x,t)eRr: x=(xl...xm)€Rm, A 1is given by
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Spectral Analysig Definitionsg, It is well known that the
eigenvalues and eigenvectors in a finite-dimensional system of linear,
first-order, time-invariant, differential equations are instrumental
in an analysis of such a system., In infinite-dimensional systems the
eigenstructure is equally important.

Let A:D(A)+X, D(A)C X, be a lirear operator with X a Banach
space. The set of all complex numbers can be partitioned into two
subsets accorcing to whether AI-A  satisfies the following three
conditions for AeC (Yosida, 1968: 209; Curtain and Pritchard, 1977:

163, 164; Naylor and Sell, 1982: 414-429):

(i) (AI-A)"! exists
(ii) (A1-A)~! is continuous

(iii) the range of AI-A is dense in X

The set of all Ae( such that these conditions are met is called the
resolvent set, while the set of all other complex numbers is called
the _spectrum, The resolvent set and spectrum are denoted by p (A)
and 0 (A), respectively.

The spectrum of a linear operator A defined on a subset of a
finite-dimensiomal space E , with range contained in E, consists of
only those AcC such that AI-A  is not injective,  Similarly,
AI-A can fail to be injective for some values of X , but, unlike
the finite~-dimensiomal case, the spectrum may contain other complex
numbers, In fact, there are three disjoint subsets of o (A), The
point spectrum consists of those AE(C for which AI-A is not

injective, The contipnuous spectrum is made up of those A for which
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(AI-A)"! exists but is not continuous, and, for which the range of
AI-A is dense in X. Finally, the residual spectrum consists of

those A for which (AI-A)~! exists and is continuous, but such
that the range of AI-A  is not dense in X,

Let the notation R(z,A) denote the operator (z1-A) 7! for
any zcpo (A) The following two facts are established in
(Belleni-Morante, 1979: 62,63):

(i) If A is a closed linear operator (AcC(X) ), Ab is a

bounded linear operator ( AbeB(X) ), and if the domain

of Ab contains the domain of A, then A+Abe€(x) .

(ii) If for any zosC ,R(zO,A)&:B(X) , then AeC(X) .

These two facts are used frequently in practical applications of the
semigroup theory of operators, For example, see (Belleni-Morante,
197y: 179) where the first fact is used in proving an important
perturbation theorem,

The set of closed linear operators is frequently partitioned in a
manner which simplifies semigroup theory discussions, The four
classes of interest are denoted by 6(1,3), &¢'( ,8), 6(M,8), and
G6'(M,2 and are defined as follows (Belleni-Morante,

1979:140,141,145):

Definition 2.3 (_ G-Classes)

Let A=€(X) , D(A) dense in X, =z<C, and 7=Re(z).
Then A is in the class

1

,;—5

(1) 6(1,2) if 7z:2>2)Co(A) and “R(Z,A)t
for all z such that 7>8

(11) 6" (1,3) ir [z:!7'>81C(A) and “R(Z,A)";T.—II'_—;
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for all z such that |Cl>8

(iii) 6 (M,8) if {z:z>BlCp(A) and for any
integer j=1,2,...

Jecz 03] < ——
(z-8)7
for all z such that >R

(iv) 6'(M,8) if {z:|{7|>8}Cp(A) and for any
integer j=1,2,...

“a(:,A)j]I —(TCT—_B;J—

A

for all z such that |z]>8

The various mathematical symbols which have appeared in this
section are summarized in Appendix A, With these fundamental
definitions and results in mind, attention is now turned to the

abstract Cauchy problem.

The Abstract Cauchy Problem

Mathematical models are frequently developed to predict the
dynamic behavior of certain variables in a physical system. In many
cases the model is finite-dimensional and one is interested in knowing
what values in R each variable assumes at any given time, In
distributed systems, however, the variables of interest can be

elements of a function space at each instant of time, Quite often a
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mathematical model of a physical system, whether finite or infinite-~

dimensional, can be expressed as an abstract Cauchy problem.

Ldies R . a2 sl

Definition 2.4 (Abstract Cauchy Problem)

let the linear operator A:D(A)>X have domain dense in the
Banach space X . The abstract Cauchy problem consists of
finding a solution to the differential equation and initial
condition

L)

o Au(t) (£>0) (2.1)

u(0) 0 uleX (2.2)

1]
[l

d . .
where Frs u(t) denotes the strong derivative.

Definition 2.5 (Solution)

A solution of the abstract Cauchy problem (2.1), (2.2) is
any continuous function u:[0,%)+X which

(i) is continuously differentiable at every t>0

i
]
|
1
1
|

(ii) is an element of D(A) for every t>0 , and

(iii) satisfies equation (2.2).

In applications, there are usually further mathematical require-
ments that must be met, rather than simply the existence of a solution
for a single initial condition. The following definition is crucial
to the development of useful solutions to the abstract Cauchy problem

(see Fattorini, 1983: 29,30):

II-12
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= Definition 2.6 (¥ell Posed)

The abstract Cauchy problem (2.1), (2.2) is well posed in
if the following two conditions are satisfied:

(1) Existence of solutions for sufficiently many
initial data: There exists a dense subspace D
of X such that, for any u’eD, there exists
a solution of the abstract Cauchy problem.

(ii) Continuocus dependence of solutions onm their
initial data: There exists a nondecreasing,
nonnegative function C(t) defined in t>0 i
such that B ‘

< C(t) ”u(O)” (2.3)

u(t)

for any solution of the abstract Cauchy prob-
lem.

These requirements are similar to those generally deemed essen-
tial in order for a mathematical model to correspond to physical real-
ity (e.g.», see Courant and Hilbert, 1962: 227): (1) existence of solu-
tions, (2) uniqueness of solutioms, and (3) continuous dependence of
the solution on the initial data. For instance, the well posed Cauchy
problem has the existence-of-solution property for a particular set of
initial conditions. (However, a solutioh is not always guaranteed to

®in a dense subset of X.)

exist for every u’eX, but only for every u
Furthermore, equation (2.3) ensures that any solution of a well posed

abstract Cauchy problem is unique. To demonstrate this, let v, w be

solutions of

— u(t) = Au(t) (t>0)
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1

and consider the vector v-w ., Clearly, v-w 1is also a solution,

and, since (v-w) (0)=0, we have from equation (2.3)

|Cv-w) <c>!

< c(t)uou =0 1

from which it follows that vEw o, Heuristically, the third
requirement 1is that two initial conditions which are '"close'" to each
other should yield solutions which are also '"close.'" The second po-
sedness condition ensures this c¢ontinuous dependence of solutions on
the initial data.

Any solution of a well posed abstract Cauchy problem with initial
condition lying in D (the set referred to in the first posedness con-

dition) uniquely defines an operator S(t):D > X as
u(t) = S(t)ul

for t > 0, with u(0) = u’ . Furthermore, S(t) is necessarily a

linear, bounded operator in D (by the linearity of A 1in equation

(2.1), and by the second posedness condition, respectively) and, as D
is dense in X ,S(t) can be extended to all of X . The operator-valued
function S 1is <called the propagator for the solution of the well
posed abstract Cauchy problem,

Well posedness of the abstract Cauchy problem supports a notion

of "solution" for any u’eX ., Indeed, suppose the sequence

{11n}® C D 1is such that un*u0 . Well posedness provides that the
1

functions s(-)unECI([O,w) sxyNct ([o,=);5x) converge uniformly to

s(*)u’ec([0,»);X) which may not be a solution in the sense of

NSRS
. f] f .
e . PR
- PR PR
. it . .

Definition 2.5, but which will be called a generalized solution if
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u’eD (this 1is the same as the usual notion of a weak solution ~—
see (Fattorini, 1983: 30,31)).
It is difficult, in general, to determine whether an abstract
Cauchy problem is well posed and, hence, whether there exists a propa-
gator for an arbitrary mathematical model with the form of equations
(2.1)» (2.2). 1If the linear operator A in equation (2.1) satisfies
certain conditions, however, the propagator can be shown to exist and,
iterative schemes are known for its construction. Specifically, if
AeB(X), or if A is in any of the &-classes defined previously, then
the propagator exists and can be constructed by an iterative process.

The details of this assertion are now presented.

I1-144
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whose every element is invertible, (82 , OLZ) introduced above is not

a group since only the identity element of S2 is invertible, By
enlarging S2 to include all rational numbers greater that zerc, a
group can be constructed. For the set S, = {r:r = p/q,p,q = 1,

2,...: it is straightforward to show that (s,,a,) 1is a group.

2
Consider now the set S = [S(t):t>0} , where S is the
propagator of a well posed abstract Cauchy problem, Let a binary

operation & be defined on SXS by
~ = 0
a(s(e,),s(t ) s(t ) S(tz) (tl,tZ;O)

where the symbol "O " represents the composition of two functions,
The following theorem summarizes several important properties of the

propagatar S (Fattorini, 1983: 63):

Theorem 2,1

If S = {S(t):t>0} , where S is the propagator for a well

posed abstract Cauchy problem, and o is the binary

operation defined above, then

(1) (S,a) 1is a monoid

(ii) for tl,tZ;O , S(t1+t2) = S(tI)OS(tz)

(iii) the operator S:[0,»)>B(X) is strongly
continuous at every t>0 , and strongly continuous

from the right at t=0,

(iv) there exist nonnegative constants M, 8 such that

sl < et

The term stropngly continuous group is defired in a similar
fashion, Consider a set S' = {S(t):tcR: , and let @' be the
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binary operation defined by
1] =
a’(s{t,),s(t,)) = S(r )os(t )
If this composition satisfies
S(t1+t2) = S(t1)os(tz)

for all t1 ,tZER , and if S 1is strongly continuous at «t=0, then
S is referred to as a strongly continuous group (Curtain and
Pritchard, 1977: 149; Fattorini, 1983: 81).

The following thearem is the most important result in the study
of the abstract Cauchy problem, It provides necessary and sufficient

conditions, in terms of the operator A and its resolvent R(z,A), for

the abstract Cauchy problem to be well posed (Fattorini, 1983: 65),

Theorem 2.2

Let the operator A in equation (2.1) be closed. The
abstract Cauchy problem (2.1), (2.2) is well posed and its
propagator S satisfies

Bt

Isceo] < e (£20)

if and only if AeG(M,8).

A similar result far che abstract Cauchy problem on the whole real

lire exists (Fattorini, 1983: 72):
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Theorem 2,3

Let the operator A in the abstract Cauchy problenm

a(t) = Au(t) ~®0< <o (2.4)

u(0) = u? ueD(A) (2.5)
be closed. This Cauchy problem is well posed and its
propagator S satisfies

“S(t)“ < Meglt] ~o< gf<®

if and only if AeG'(M,3).

It is useful now to state a definition and some results from
semigroup theory. Theorems 2,2 and 2.3 are usually difficult to apply

directly, but the results below improve the situation somewhat,

Definition 2.7 (Infinitesimal Generator) (Curtain and
Pritchard, 1977: 150,151; Fattorini, 1983: 81)

Let S = {S(t):t>0})CB(X) be a strongly continuous
semigroup, The operator A defined by

_ lim S(t)u-u
Au = Lo+ t

whenever the limit exists, is the infinitesimal generator of

7%

The phrase ™A generates a strongly continuous semigroup S " is
frequently wused to mean that A is the infinitesimal generator of S.

The following two theorems are proven in (Fattorini, 1983: 81-83):
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Theorenm 2.4

The linear operator A generates a strongly continuous
semigroup {S(t):t>0} , with the property

s cor|| < ve®F

if and only if A=G(M,B).

Theorem 2,5

The lirear operator A generates a strongly continuous group
1S (t) 1=—o< oo} , with the property

s cool] < weitl

if and only if AsG'(M,2) .

Summarizing the results thus far, it is apparent that the problem
of showing the operator A in equation (2.1) (equation (2.4)) to be an
element of 6(M,R (6'(M,2) ) is equivalent to showing the
(corresponding) abstract Cauchy problem to be well posed. 1In order to
go further and actually solve a well posed Cauchy problem, one needs
to construct the semigroup generated by A since this semigroup is the
propagator for the problem and provides the solution u(t) = S(t)u’
of equations (2.4) and (2.5). Several special cases are now
considered for the operator A in equation (2.4).

AcB(X) , Construction of the semigroup operator is most easily
accomplished when A in equation (2,4) is an element of B(X). (It
can be shown that A<B(X) implies that Ac&'(M,2) ,) The following

result follows directly from a theorem in (Belleni-Morante, 1979:
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Theorem 2,6

If A=B(X), then A generates the strongly continuous group
S (t)i=o<t<™; with S(t) defired by

n

. 43
S(t) = lim E: t'A

n-- i!

j=0

It can also be shown (Belleni-Morante, 1979: 130-133) that

satisfies

“S(t)” A e"AlHtl (-o< <o)

In light of Theorem 2,5 and the foregoing, it is clear that the

solution of the abstract Cauchy problem (2.4), (2.5) is given by
u(t) = S(t)u’

for any u’sx,

A=G(1,0)  Ac&'(1,0), Consider next the case where Ac&(1,0)

in the Cauchy problem of equations (2.1), (2.2). Define a sequence of

. .
operators, °S_ (L) _; by

= —.E -1 > =
s_(£) = [(I-2A) (20, n=1,2,...)
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1
P(x,t) = m[ pf(x,p,t)d’p (3.3)
X .
Vix,t) = E(—‘l{?[ v(p)f(x,p,t)d’p (3.4)
X o

where v(p)=p/¥m , The current density vector, J(x,t), is given

by

J(x,t) = qV(x,t)

Fimally, the pressure tensor, P , is defired as follcws:

P(x,t) = f [R‘B(i,t)][X(R)-_\L(é,t)]Tf(E,R,t)dap (3.5)
R3
The preceding definitions can all be expressed rigorously within
the context of probability theary., Let Q=R°® , and denote the Borel
field (Maybeck, 1979: 62) associated with R° by F. Define next a

set function P for every te[0,T] by
pt(tr (x,p):(x,p)eB}) = %}ff(ﬁ,p_,t)daxdap
B
where B=F |, and f is a distribution function as defined above., For

each t:=[0,T. , the triplet (Q,F,pt) forms a probability _space

(Maybeck, 1979: 64), Defining a new function f* by

1
£*(x,p,t) = FE(x,p.t)
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effects. This approach becomes unwieldy for very large numbers of
particles, but it is sometimes taken (Cohen and Killeen, 1983: 59).
Generally, however, only macroscopic quantities are of interest, as
opposed to the specific path of any single particle. Consequently,
models of a plasma usually incorporate probability concepts.

The kinetic theory of plasmas is frequently developed by use of a

distribution function* (Davidson, 1974: 11, 12; Reif, 1965: 494, 495;

Krall and Trivelpiece, 1973: 5,6; Chen, 1974: 199, 200). Suppose
there exists a collection of N charged particles and a function,
f:R*x[0,T]+[0,»). f is called a distribution function if the pro-
duct f(g{_,P_,t)daxd3p yields the mean number of particles in the
hypercube d’xd’p centered at (2,p) at time t .

By integrating out the dependence of f on the momentum coordinates,

E % s macmmem——a w e = = a

the pumber density, n(x,t), is obtained: !

n(x,t) = [f(z_,p_,t)dap (3.2)
R3
If the particles each have charge q, then the charge density,

o(x,t) , is given by
o(x,t) = qn(x,t)

The macroscopic momentum vector, P(x,t) , and the macroscopic
velocity vector, V(x,t) , are defined as follows:
*The reader is cautioned that the phrase "distribution
function™ in plasma physics literature is not synonymous

with a ‘T"cumulative distribution function"™ in probability
theaory.
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Notation and Definitions

Most of the notation in this chapter corresponds to that commonly
found 1in plasma physics texts, A summary is given in Appendix B, but
for the reader who is unfamiliar with this area, a discussion of some
of the pertinent notation and definitions is now given,

Single pParticle. Consider a particle of mass m and charge 4 in
the presence of an electric field E and magnetic field B, The force

on the particle exerted by these fields is given by
F(t) = qlE(x,t) + v(t)*B(x,t)]

where v (t) denotes the velocity vector of the particle, The relativ-

istic version of Newton's second law of motion is
d_p(t) = EF(t)

where p(t) is the mechanical momentum vector of the particle, The
momentum vectar is related to v (t) by

-1
3

p(t) = ymy(t) = (1-8%) *myv(t) (3.1)

where B8=8!=/v(t)|/c , and c is the vacuum speed of light,
Plasma, Now consider a collection of charged particles, It 1is

always possible to write the equations of motion for each individual

particle including inter-particle forces as well as external field
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to the summary of notation given in Appendix B in lieu of reading the
following section.

The most complete description of a collisionless plasma consists
of the self-consistent Vlasov and Maxwell equations. Models developed
directly from these are known as microscopic descriptions (Davidson,
1974: 10). These equations are presented and a linear perturbation
model is developed. This model is then shown to have the structure of
an abstract Cauchy problem,

By "taking moments"” of the Vlasov equation ome can develop a
chain of equations which are commonly referred to as mac ic
descriptions (Davidson, 1974: 14). The continuity and momentum
equations are the first and second set of equations in the chain, and
these are presented following the microscopic model discussions.

The microscopic and macroscopic descriptions are stated in Car-
tesian coordinates for ease of exposition, but typically a cylindrical
coordinate system is more practical when invoking symmetry conditions.
Therefore, a coordinate transformation is performed on the macroscopic
equations. This facilitates development of a particular single degree
of freedom nonlinear model., This model is linearized about an appro-
priately chosen equilibrium, and the resulting linear model is also
shown to have the abstract Cauchy problem structure.

The final section is concerned with a further simplification of
this single degree of freedom model which isolates certain dominant

dynamic behavior.
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of modeLs with the abstract Cauchy problem form. Successful develop-
ment of such models would invite application of the growing body of
intinite dimensioml modern control theory to particle beam dynamics
problems, j

The inter-particle forces are typically classified as either col-

lective or collisiomal forces (Lawson, 1983: 2). Collective forces

O P ey V|

are those which depend only upon an average of the fields of many
neighboring particles, Collisional forces, on the other hand, depend

upon the detailed structure of the charge distribution. The models

Sl Bolonted

developed in this chapter deal only with the case in which collective
forces dominate, Collisional forces are not considered since particle

accelerators are generally designed to have low collisional frequen-

IR RPN,

cies,

The term "plasma" has been defined in various ways in the litera-

ture (Lawson, 1977: 3). In the present work, any collection of
charged particles whose collective forces are not negligible, when

compared with forces exerted by external fields, is termed a plasma.

In many applications particle beams are produced and transported
some distance in a vacuum. All models in this chapter are developed
under this assumption. Consequently, the assumptions made thus far
can be simply stated as follows: this chapter is devoted to the pres-

entation and development of dynamic models of a collisionless non-

PR R W A DY PP Tl o ol oW A

neutral plasma in a vacuum., ;
Qverview, Notation and definitions from electrodynamics and q

plasma physices are stated first, Since the notation is essentially

standard, the reader familiar with these two areas may wish to refer

et b
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III. Modelling the Dypamic Behavior of
Intense Charged Particle Beams

Introduction

Problem Description and General Assumptions. In this research

charged particle beam is considered to be any collection of charged

SRR o a” A s, 3 B A smem B4 __ e _e_-_.~

particles having gross motion approximately parallel to some curve,
The curve is called the axis and, in general, the cross-sectional
shape of the beam varies along the axis., A wide range in complexity
of beam models exists due to the fact that the particles are charged.

For a sufficiently low number density, the trajectories of

ettt ol B, B o Bl iac®,

charged particles are unaffected by the presence of other particles
around them. In this case, the modelling process is relatively

straightfarward since overall beam behavior can be inferred from

AR I BB Bentls

motions of individual particles. The study of trajectories of parti-

A

cles in low density particle beams is referred to as "charged-particle

opties™ (Lawson, 1977: 3) and is not considered here,

cAALS A B R

Inter-particle farces cannot be ignored at high number densities;
far moare complex and interesting models are required in this case.
Most often these models consist of partial differential equations,
Consequently, the study of the dynamic behavior of beams whose inter-

particle forces cannot be neglected is a ripe area for the development

S A A Dt ma s u a8 s als s
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devoted to presenting (and, in some cases, developing) some of these :

.- models,
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The spectrum of A can be shown to be the empty set in this case.

: Ihe Convection Operator (Belleni-Morante, 1979: 340-344),

Consider next the operator A:D(A)~>X defined by

.: _ d
. Af = -Vaf

d
with X=L% (- ,») and D(A)={fax:afeL2(—m,w)} . It can be shown

that Ae&'(1,0) and, further, that the strongly continuous group

I. {S(t):-w<t<wlgenerated by A is characterized by
i S(t)u’(x) = u’(x - vt)

Summary

This chapter has provided a necessary frame of reference for the

next three chapters, Soame notation and fundamental definitions were

ERAAT RS FETRrE

! presented first, along with several references, Next the structure

and some Kkey concepts associated with the abstract Cauchy problem were -
introduced. The link between operator semigroup theory and the Cauchy J
’ problem was then established, along with several important results, "
. Finally, some familiar operators were covered in the semigroup theory
setting. ]
. r3 indicated in the first chapter, a wide variety of partial '1
:":j differential equation models have been established to describe the "!
dynamic behavior of a beam of charged particles, The next chapter is “
U

II-28




Rt ) o

Y
e T

v,

P,

LA am o o (

illustrate the wide applicability of the theory.
th
nth-grger Matrix, Let A=A, an n -order matrix of real numbers

with D(A) = R™ = X | 1In this case, the associated abstract Cauchy

probl em
Sox(t) = ax(t)
x(0) = x°
with x = (xl,xz,...xn) , 1is a finite-dimensional model

(dim(X) = n), and AeB(X) . Consequently, by Theorem 2,6, A
generates the strongly continuous group {S(t)-»<t<=} yhere
n

W
$(t) = lim E ETA” - At
n-—+o© J-

j=0

The spectrum of A consists of the n (or fewer) complex numbers A

w for which
det(AI-A) = 0

An Integral Operator (Belleni-Morante, 1979: 136-138). Let the

operator A be defined by
1

Af = /(x-y)f(y)dy
0
for every feX = C[0,1], It is not difficult to show that AcB(X)

and that A <1, The strongly continuous group of operators

{S(t):-o<t<o} 4is defined by

S(e)f = £ + /iZ sin<—t->Af + 12(1-cos _t_>A2f
/12 V12
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The operator A is lipear and has domain, D(A) , in the Banach space

]

X, The function g takes on a value in X for each t>0, The 1
-

following theorem provides sufficient conditions for this problem to :::
have a unique soclution (Fattorini, 1983: 87): t::
" |

!

Theorem 2,12 e

0 B
ol il VR TS

Let the operator A in equation (2,6) be an element of the
class %5(M,2) , If g is a continuously differentiable
function on the interval [0,T] , then the unique solution
of equations (2.6), (2.7) is given by

t
u(t) = s(eyu’ + fS(t-s)g(s)ds (0<t<T)
0

where {S(t):t>0} is the strongly continuous semigroup
generated by A,

TR il BT

Some Familiar Qperators

Various operators which are familiar to engineers and physicists
have been analyzed in the literature from the semigroup operator point
of view. Results are now given for the following operators: (1) an
n"order matrix of real numbers, (2) a specific integral operator,
and (3) the (scalar) convection operator., The first example involves
a bounded operator defined on a finite dimensiomal space, the second a
bounded operator defined on an infinite dimensional space, and the o
final example deals with an unbounded operator defined on an infinite :::

dimensiomal space. These specific operators are chosen solely to
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- following result is very practical (Belleni-Morante, 1979: 179-182):

- Theorem 2,11
If A = Ab+Au ,AbeB(X) , and AU€G(M,8), then
Ac6(M,3+M Ab ).

As a result of this thecrem, one need "worry"™ only about the

"unbounded porticn" of an operator, usually the derivative terms, The ;
¢
strongly continuous semigroup for the operator A satisfying this K
theorem is constructed by an iterative process. Let {S(t):t>0} be 3
the semigroup generated by Au , and define the sequence {Zj (t)}(’;=1 j
by s
z,(£)f = S(t)f (t>0) .
LY ]
t s
Zn+1(t)f = S(t)f + [s(t—s)Abzn(s)f(s)ds (e>20, n=1,2,...) 's
0 g
L
_ The strongly continuous semigroup {z(t) :t;O} generated by A, then, ;
;if is defined by 3
r
N, Z(t)f = lim Z,(t)f (VEeX, t>0) ;
. jre ] = r
s The final result in this section is a theorem concerning the
- inhomogeneous problem:
=
9
d
‘ci—Eu(t) = Au(t) + g(t) (2.6)
u(0) = u’ (2.7) A
L B
X
‘ N
II-25 g
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(2.4), (2.5)) is given by

u(t) = Z(t)u®

for any u’eD(A) and for all t>0 (-®<t<® ),

Further Practical Results

Three results which are often of use in the application of the

theory are now introduced, The first is generally useful if the

underlying space X is a Hilbert space and the norm corresponds to the

energy of the system.

Theorem 2,10

Let A:D(A)>X , where D(A)CX and D(A) is dense in the
Hilbert space X , Then Ac6(1,8) if and only if

(i) (zI-A)D(A)=X Vz such that Re(z)>8

(ii) Re(Af,£)<8 [le]f? VEeD(A)

A densely defined linear operator A satisfying condition (ii)

B=0  is called dissipative; also, if -A is dissipative then

. Thearem 2,10, refer to (Belleni-Morante, 1979: 142-145),

E Often a complicated operator A can be broken into two opeators:
: A A= AHA If A, 1is chosen such that it is a bounded linear
;. operator, defined on all of the underlying Banach space X, then the

T II-24

called acgretive, For further discussion in this area and a proof of




AcG(M,3), Ae6'(M,3), The proofs of Theorems 2.7 and 2.8 are

easily modified far Ac6G(M,0) ar Ac6' (M,0) , Furthermore, if

Ae& (M,3) (Ae®'(M,B)) then the operator A1 , defined by

A = A-8I

1

is in the class G(M,0) ( &'(M,0) ), Consequently, the following
theorem can be proven with little additional work (Belleni-Morante,

1979: 159):

Theorem 2,9

If Ae6(M,3), then A generates the strongly continuous
semigroup {(2(t):t>0} with Z(t) defined by

Z(t)u = e"Fs(t)u (VueX, £20)

where {S(t):t>0} is the semigroup generated by
A = A-RT,

1

The analogous result for Ac&'(M,R) follows immediately. The norm of

Z(t) satisfies
"Z(t)“ < MeBt (-o< <o)

for Ae6(M,3) , and, if AeG'(M,3) generates the strongly continuous

group {Z(t) :~®<t<o} ,
f
“Z(t)“ hS Mesltl[ (~o<t<®)

In either case, the solution of equations (2.,1), (2.2) (equations :
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Theorem 2.7
IfAcG(1,0) , then A generates the strongly continuous
semigroup {S(t):t>0} with s(t) defined by

S(t)u = rlligsn(t)u (YueX, -o<t<®)
Additionally, this semigroup satisfies
IIstoff <1

and, hence, the solution to the Cauchy problem of equations (2.1),

(2.2) is again

u(t) = s(t)u’ (£>0)

for any u’cD(A) ,
Letting S_(t) be defined as above, but for -®<t<e, one also

b _ has the following (Belleni-Morante, 1979: 160):

¢ | ) Theorem 2.8

1If Ae6'(1,0) , then A generates the strongly continuous
group {S(t):-~w<t<w} with §S(t) defined by

S(t)u = lim Sn(t)u (YueX, -o<t<e)
The group thus defined satisfies

lls (o]

A
—

and the solution of equations (2.4), (2,5) is

u(t) = s(t)u?

. for any u’=D(A)
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it is straightforward to show that f* is a joint probability density
function (pdf) for each tc[0,T] with random variables x and p .
Integration of f* over all peR® yields a marginal probability den-

sity function:

f:(_\i’t) = ff*(f_’ﬂyt)dsp
= R3

This marginal pdf is related to the number density, n(x,t) , by

n(x,t) = Nf;(z,t)

A conditional oprobability density function is now needed to express

the macroscopic momentum vector, the macroscopic velocity vector, and

the pressure tensor in terms of the probability space, Specifically,

*

let the function ?RIE

be defined by

f*(é,Ryt) f(z(_’Rat)
f;(zc_,t) T n(x,t)

f*‘ ( ;',t
plx RIZE)

Since is a pdf for every (x,t)eR*x[0,T] ’ conditional

f*
plx

expected values of any function 6(p) can be taken:

EL2(p) x| = [@(p)f* (pix,t) dip
P/l . P P_!i—,",
R3

Conditional expected values of the functions p , Vv(p), and
r 7 T
LB - B(i,t)J[l(P_) = !(ist)]

yield P(x,t), V(x,t) , and P(x,t), respectively,

III-7

TGP L, L P




Expression of the basic definitions of plasma physics in a proba-
bility theory setting provides rigor and clarity for applied mathema-
ticians, On the other hand, the notation used by plasma physicists is
both intuitive and well-established, Consequently, now that the con-
nection between these two areas has been established, plasma physics
notation and definitions are used in the remainder of this disserta-
tion.

The ratiomlized MKS system of units is used in this chapter
since this seems to be the choice of many authors of charged particle
beam texts ((Lawson, 1977), for example), However, it should be noted
that most plasma physics authors prefer the cgs Gaussian system (for
example, see (Davidson, 1974; Krall and Trivelpiece, 1973)). Both
systems have their advantges and disadvantages, and the transition
from one system to the other is not difficult, In the rationalized
MKS system, the symbols €,9H, are used to represent the absolute

dielectric constant and magnetic permeability which are related by

Finally, since vectar cross products are somewhat tedious to
write out in detail, the permutation symbol (Marion and Heald, 1980:
456), Eijk’ as defined in Appendix B, and summation notation are fre-

quently used. By way of example, consider the cross product
y_ = EXX

The components of w can be expresed compactly as

III-8

RN

N I B ol SRV A

PO Sl

S AR . TR IS P L. 2 ULENL N & il

N CE_ty TRy v

TN T A

fo__r o1

PP o ¥ §

”

Be 2R

Tata"a

.........



. .. ‘e V-- --. - -.A -- -~ . - .
R R, SR S S S L, Sl Y S R A . o,

T N T N T Y T T T T T T ey

AN S0 it iR dad 4 i i,
w, = Eijkujvk (i=1,2,3)
For instance, if i=1, the above expression yields
3 3
Y1 T E: E:eljk T UV, T W, Y,
j=1k=1
since €,,,=1, €,,,=-1, and Eljk=0 for all other possible trip-

les (1,3,k).

Microscopic Descriptions

Ylasov Equation. The distribution function of a nonneutral col=-
lisionless plasma of a single species obeys the Vlasov equation
(Davidson, 1974: 12)., If E(x,t), B(x,t) represent the total elec-
tric and magnetic field at time t, the Vlasov equation in Cartesian

coordinates can be written as
i—f(x t) + v —é-f(x t)
at xR iaxi REPR

+ qlE, (x,6) + EijijBk(ﬁ,t)]gi——f(z,R,t) =0 (3.6)
i

The fields E, B arise from external charges as well as from collec-
tive effect from the particles in the plasma itself, Denoting the

exterral fields by EC, B and the self fields by E°, B°, the total

fields can be expressed as
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|m

B=3 +8B

Maxwell's Equations, Maxwell's equations must be satisfied as
well as the Vlasov equation, The external fields are produced by
external charges or current densities, but since these will ultimately
be regarded as controls which can be applied in a prescribed manrer,
their corresponding Maxwell equations are unimportant at present, On
the other hand, the self fields depend intimately upon the distribu-

tion function through Maxwell's equations:

3 S - - 2 2 S
ﬁEi(ﬁ,t) H e J(x,t) + ¢ Eijkg B (x,t) (3.7)
X
S = _ S
_g_EBi(_)E,t) eijkgx E (x,t) (3.8)
h|
g E?(i,t) = o(x,t) /e (3.9)
X.
i
g Bj(i,t) =0 (3.10)
X,
j

for i=1, 2, 3 ., Recalling that 0 and J depend upon the distribu-
tion function f , it is seen that (3.6) through (3.10) represent a
system of nine coupled nonlirear integro-differential equations, Rep-
resenting the ordered set (f(x,p,t), _F;S(gc_,t), Es(i,t)) by

u(t) , equations (3.6) through (3.8) can be written as

d u(et) = F(E®,B%) (u(t)) (3.11)
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where F depends upon the external fields and represents the nonlinear
E operations indicated in those equations, Furthermecre, equations =1‘
(3.9), (3.10) serve as restrictions on the domain of F, as would :
tj“ boundary conditions which are typically present in any given physical 3
o
situation, A solution of the differential equation (3.11), and an ’1
associated initial value, u(0) = u’, is generally difficult to ‘
obtain, J

Linearization of the System, If the nonlinear operator is
approximated by a linear operator, the resulting system can be shown
to be an abstract Cauchy problem, This is now demonstrated for the
special case of both the the electric and magnetic external fields
being identically zero,

In infinite~dimensioml systems, nonlinear operators can be
approximated in a manner analogous to the first-order Tayloar series

technique in finite-dimensioml systems, Consider the equation

x(t) = g(x(t))

¢

0

- where & 1is a vectar-valued nonlinear function: g:R">R", If x° is

Ererx %

o known to be a solution of g(x")=0, and if

d o _
dc= 0

-
Pald o daialnlak

then x° 1is called an equilibrium solution, Suppose g can be

| represented by a Taylar series at x°: -

R
| B

3
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Now, letting Sx(t)=x(t)-x° , the original system can be approxi-

mated by the linearized perturbation equation

Sx () * J_o8x(t) (3.12)

lIrv"'.
L e LT

where J_ o = 3 g(x')., The operator J ois the Frechet derivative of

: 2 9x
the nonlirear g at _}50 provided each entry in Jxo is continuous (see

[y

LI NP
s
t s

—— "
L A
et U e

’ PN o« 0t
4 [ P et e

examples 1 and 4 of (Luenberger, 1969: 171=174)), In light of the

comments in Chapter II following the discussion on Frechet deriva=~

o -

tives, the Gateaux derivative of g is also Jxo .

In many situations it is not possible to show that an operator is

il B

Frechet differentiable, although the Gateaux derivative can usually be

determined in a straightforward manper, Linearizations based on the
Gateaux derivative cannot be justified rigorously a priori, but such
models are often used, Solutions obtained for these models should be
verified, if possible, by alternmate methods,

Let the operator 6Fu0 :X»X , X a Banach space, represent the

Gateaux derivative of F:D(F)>X at u’, and consider the equation

d u(t) = F(u(t)) (3.13)

Suppo se u’ is an equilibrium solution (defired in the same manner as
in the finite-dimensional case: F(u®)=0) and let Su(t)=u(t)-u’ ,
Provided the Gateaux derivative is a linear operator, the approxima=-

tion
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F(u'+8u(e)) = F(u®) + (SFuo(Su(t)) (3.14)

is made, This 1s a direct result of the definition, since if

Su(t)=hv(t) , for any veX, heR, the following limits exist:

lim F(u’+h ~F(u’) = 1i 043 “F(u®) = 11
hi8 (u vét)) F(u”) %iB F(u +0uét)) F(u’) %i% %dFuQGu(t)
By definition of the limit, then, this implies

lim i”F(uo-i-Su(t))—F(uo)—5Fu05u(t)“ =0

h=-0 j
Consequently, for h sufficiently small, the differential equation
d Su(t) = SF ,8u(t)
de 4
becomes the infinite-dimensional analogue of the finite-dimensional

result of equation (3.12).

With the approximation (3.14), the nonlinear Vlasov equation
(3.6) can be linearized 1in a straightforward manner, Let
E°=8%=0 , £°,E", B be equilibrium solutions of equations (3.6)
through (3.10), and define &f, SE, 8B in the obvious way., Then the

linear approximation to the Vlasov equation is
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- 9 8f(x,p,t) + v.3 Sf(x,p,t) :
‘ ot Yx. -
) il
0 0 v
+ q(E; (x) + €ijijBk(§’t))g SE(x,p,t) 2
Pi .
* q(SEi(i’P—’t) + EijijSBk(i’t)_a £°(x,p) = O (3.15)

api

Since Maxwell's equations are linear, simply replacing the functions

(f, E°, B®) with (6f , §E®, §B°) in equations (3.7) through (3.10)

yields the linearized versions of these equations:

s - _ 2 3 s
%_tSEi(ﬁ,t) boac” [ v 8f(x,p,t)d p+c2€ijk8 §B, (x,t) (3.16)
R3 i

3 8BS (x,t) = -, .0 E’(x,t) (3.17)

ot ] 09X,

J
- 5 SES(x,t) = i_fﬁf(zs,p_,t)d p (3.18)

‘) ax, ] €,
J R3
3 6B?(§,t) =0 (3.19)
*3

The system of equations (3.15), (3.16) and (3.17) represents an

abstract Cauchy problem

3

d w(t) = Aw(t) (£>0) L,

dt

with initial condition w(0) = w’, The underlying Banach space :.'_:,

7 .l

X = ‘Hlxi is yet to be specified. The domain of A should include ;-
l._—‘

1

the restrictions of equations (3.18), (3.19), as well as any addi- N

tional boundary conditions, -J

Further analysis of the microscopic equations requires realistic i{

2

o
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equilibrium solutions which are smooth enough for their derivatives in
equation (3.15) to exist. Such solutions are not known at this time,
although equilibrium solutions involving the Dirac delta function have
been discovered (e.g., see (Hammer and Rostoker, 1970: 1831-1834)).
Various attempts were made to continue analysis of microscopic models
using such equilibrium solutions, but the resulting linearized equa-

tions were intractable,

oD L

Equations can be developed from the Vlasov equation which
describe the evolution of certain '"averaged" quantities. Such equa-
tions are termed macroscopic descripiions, and the first two sets of
these are presented below. These descriptions are appealing since the
unknown functions associated with them are more intuitive than the
distribution function in that the physical quantities involved are
more directly observable. However, certain phenomena, such as Landau
damping, cannot be predicted by such descriptions (Davidson, 1974:
11), and, consequently some information is forever lost once micro-
scopic descriptions are abandoned.

The macroscopic equations are derived by multiplying the Vlasov
equation by an appropriate function and integrating over all momentum
space. Details are not presented here since they can be found in var-
ious plasma physics texts (see, for example, (Chen, 1974: 211-213))
The first two sets of equations are commonly referred to as the g¢op-
tinuity egquation (3.20) and the momentum equations (3.21) (Krall and
Trivelpiece, 1973: 88; Davidson, 1974: 14):
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9_n(x,t) = -_3 [n(x,t)V. (x,t)] (3.20)
ot dx. 1
1
3 Po(x,t) + V. (x,t) 3 P.(x,t) + 1 5 [P(x,c)] .
3t axi n(i,t) axi ij

= q[EJ_(:_{,t) + ¢ (E’t)Bl(E’t)j (3.21)

jk1VK
where i = 1,2,3 , and [P(ﬁ,t)]ij is the (i,j)-component of the
pressure tensor (see equation (3.5)).

Equations (3.20) and (3.21) cannot be solved without knowledge of
the pressure tensor, P . The components of P would appear as time
derivatives in the next higher moment equation, the energy equation,
but a quantity would be needed in this equation from the next higher
moment equation, and so forth, This chain of moment equations is fre-
quently broken here By making some approximation to P , If the spread
in the momentum is small at every point, then comporents of P are
small and, in the limiting case of the momentum being a deterministic
quantity everywhere, P = 0 (Davidson, 19T4: 16). The spread in
velocity is also zero, in this case, and thus the temperature vanishes
everywhere, This idealized case is termed the <¢old plasma
approximation.

As mentioned previously, the macroscopic equations of (3.20) and
(3.21) are somewhat more intuitive than the Vlasov equation which they
replace. Integral operators are required in microscopic descriptions
(see equations (3,7), (3.9)), but are unnecessary in the macroscopic

descriptions. Furthermore, for the cold plasma approximation,
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although macroscopic descriptions replace a single unknown function
(the distribution function, f ) with four unknown functions (the num-
ber density and the three components of the macroscopic momentum vec-
tor) the reduction in the number of independent variables 1is three
(from (x,p,t) to(i,t)). For many applications, only these macro-
scopic functions are of interest. In light of these observations, it
is concluded that macroscopic models are preferred in the design of
particle beam control components, so long as they accurately describe

the number density and the macroscopic momentum.

A Single Degree of Freedom Linear Model

Introduction. Various additional assumptions are introduced 1in
this section in order to derive a suitable model for subsequent illus-
tration of semigroup theory techniques. A broad variation in operat-
ing conditions exists for charged particle beams. Each assumption
below has been invoked in plasma physics research in the investigation
of beam behavior under a specific operating condition (e.g., see
(Davidson, 1974)). Some assumptions, for example the nonrelativistic
velocity assumption, serve only to call out a specific regime of oper-
ation. Other assumptions, such as the assumption of the adequacy of
macroscopic descriptions, are made to simplify the model, with the
justification being that they have previously been invoked by plasma
physics researchers and have been found to be useful and adequate in
describing beam dynamic phenomena., In either case, the philosophy

taken now is that simple, though less accurate models whose dominant

ITI-17




behavior can be expressed analytically, are superior in preliminary
control designs to more precise models which require computer gener-
. . *

ated numerical solutions,

The cold plasma assumption is in keeping with this philosophy. As
previously stated, this is equivalent to assuming that the momentum is
deterministic at every point. In practice, if the momentum spread at
every point is sufficiently small, then the cold plasma assumption is

reasonable., Otherwise, approximations of the pressure tensor might be

required (see (Krall and Trivelpiece, 1973: 89)).

*
The assumptions made in no way limit the applicability of

semigroup theory. For example, the same techniques wused
below to analyze the single degree-of-freedom model could be
applied to a three degree-of-freecom model. See Appendix D
for the structure of such a model.
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Reduction in the number of degrees of freedom is also useful in
simplifying the model. However, models which allow only a single spa-
tial degree of freedom in a Cartesian coordinate system are generally
unrealistic, so a cylindrical coordinate system is introduced.

Since most applications of a charged particle beam require only
that the beam operate near some design equilibrium solution, a linear
model about an equilibrium point should be adequate for control pur-

poses. Indeed, if the control function desired is that of regulation,

deviations from the equilibrium will be constrained to be small by the

action of the regulator. This notion is fundamental to control theory

design and has been applied with success routinely over the years.
Assumptions. The following assumptions are in effect in the

development below:

sl bl

Al. the beam is in a vacuum
A2, all velocities are nonrelativistic

A3. the momentum spread at each point is small (cold plas-
ma)

A4, macroscopic descriptions are adequate
AS. the beam is uniform in the azimuthal direction
A6. the beam is uniform in the axial direction

A7. deviations from the equilibrium solution are small

Additional assumptions are needed later (page III-24) for the develop-
ment of a specific equilibrium solution, and are stated at the outset
of that development.

Assumpt ions (Al) through (A4) result in the following system of
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at z°cyxX , 8G o , can be computed as follows:

G(z°+hz) - G(z°)

z- = h
0
, 9. 0 _ n 0,
I, t zgl, * zsgg (leCS + 25510)
.o+ 2% ¢ o+ 2%, - (2°z 4+ z%z )
2 1074 10 875 6° 8
0 0 0
I + z + z ~ (z + z°C
; CS Ca ( 9C4 99)
- i (3.66)
m
0
0
0
0
0
e —

This expression represents the Gateaux derivative of G for a general

. e
equilibrium 2z and associated external equilibrium fields, E

Be’:. For the rigid rotor equilibrium, the vector 2° is given by
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e e e
E_(r,t) + B (r,t)u, - B (r,t)u,

By (r,t) + Bo(r,e)u, - BS(r,t)u,

G(E®, B () = 2| ES(r,t) + B (r,t)u, - BL(r,0)u,

(3.65)

Since the external fields Ee , ge are being viewed as the controls,
defire the function space consisting of all physically attainable con-

6
- e
trols as Y = i Y, where E cY,, Eaec:Y2 , ...B;EYS . Conse-

i=1
quently, the mapping _G_(E_e, Ee) represents a unique nonlinear opera-
tar for every (ES, g"')ag or, alternatively, one can consider the
mapping G as one which takes elements from UxXX into X ., This lat-
ter interpretation allows an approximation of G by the Gateaux deriv-
ative in a manner analogous to the approximation above for F .
Consider an arbitrary element : im ¥*X , and suppose the X._,

i =1,2...9, areall Banach spaces, The Gateaux derivative of G
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;
_Drns
where Dr and 5( are defined by
- d
Drt T dr £
~ 1 d -
Drf T r dr (rt)

. . e
Consider next the nonlinear operator G(E , B
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0 0
+ - F
SE o) Lim ECu+hn) - F(u™)
- —u?t= h~0 h
1 d o od 1 d 0 o d
(= = - - - + —3r
(r dr(ruz) M uZdr)nl (r dr(rul) uldr)"2
d o od 2 0 q o q .0
"(a—ruz + Uza-;' + (?u3 + Eug)na - EUBHH
9 _ 9 0o, q 0
+ Ens muu”s + muan
1 d 0 q 0 1 4 0 d q q 9
—(? gty + mug)q2 - (ru2 + uzdr)n3 + ol 2Uo N,
que - 4 4o - wd a q
(mus dru“)nz Y23t e ml7 T op¥ane
= —uoqcz(ugﬂl + ugﬂz) (3.63)
Ve
- c? (u? + uln,) - czi—
Hod 3Ny 173 dr e
2
- 2 (40 0 e’d
Hoac”(uyn, + un,) + - 57N,
d
o
- Ld
r dr s
—
This expression is the Gateaux derivative for F for a general equi-
librium solution u’ , For the rigid rotor equilibrium (equation
(3.60)),
III-30
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ments of u(t) in equations (3.41),(3.42), and (3.43) which involve
the external fields, and it is discussed in more detail presently. A
lirear model which approximates this system is now developed,

Let u’ , B° continue to denote the rigid rotor equilibrium solu-
tion (equation (3.60)), and the z -~component of the external, uniform
magnetic field, respectively, Defire the perturbed variables Su(t)

in the wusual way: ou(t) = u(t) - u’ | Similarly, let the per-

turbed external fields, 6_Ee(r,t) , §_§e(r,t) be given by

SES(r,t) = E%(r,t) - E®*°(r) = E%(r,¢)
Bf;(r,t)
88%(r,e) = 3%(r,t) - 3%°7 () = [BS(r,t)

e
B, (r,t) - B?

| |

If all the spaces X,, i = 1,2,...9, are Banach spaces, then the

nonlinear operator F can be approximated by

F(u’ + Su(t)) = F(u’) + 8F o (Su(t)) (3.62)

where ‘TEU—, is the (linear) Gateaux derivative of F at u° (see the

discussion associated with equation (3.14) in the section "Microscopic

Descriptions®™). Calculation of S_FUO is straightforward:
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1973: 117).  Fimally, for ©(>20° , two equilibria are possible
(termed the slow mode/ fast mode (Davidson, 19T4: T7)).
The complete solution faor re (0,R] is now summarized, Letting

, B,

T
E>(r) , By(r) , B (r)] , the rigid rotor equilibrium solution

u’ = [a®(r) , Vi(r) , Vi(r), V) (r) , EX(r)

is

2€, (3.60)

Linearization., Equations (3.40) through (3.46) and (3.48)

through (3.50) are seen to form a system of nine coupled nonlinear :-4

differential equations and can be expressed as

Srule) = E(u(e)) + (2%, B%) (u(e) (3.61)
9

where E:D(E)CX~X , % = T X; , andu(e) = [alr,e), V, (r,0),
l=

V9 (r,t), Vz(r,t:), Er(ryt), Ea (rst), Ez(l’,t), Ba (r’t)’

Bz (r,t) ]T . The operator Q(E_e , ge) represents operations on ele-
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The term qB°/m, commonly called the gyclotron freguency (Lawson,
1977: 17), appears often in plasma physics and is denoted bywc. The

term within the brackets is simplified by recalling that

2 = 1
Hp€yq

and thus, this term reduces to

2 0
(1 ~ (80)%]

2me

By the nomrelativistic assumpt:ion,(B;)2 is neglected. The phrase

plasma frequency is given to the expression (Lawson, 1977: 119)

n® -k
lal [5]

and it is given the symbol ® The following expression for VE)O (r)

p L 4
emerges in light of the foregoing:

1+

;0 - _ 1r 2 _ 2%
vy (1) Slw [mc Zmp] ] (3.59)
The wuse of the phrase "rigid rotor equilibrium® is justified by this
expression.

The expression within the radical in equation (3.59) provides a
minimm value far B°, The external magnetic field is "sufficiently

large" (see assumption Et1 above) if

2

W
c =

v
N
e

N
v
o]

[=]
A\

m

I o, = 2’»; , then the rotation rate is 2~C, and the phrase "Brile-

louin flow" is used to describe this situation (Krall and Trivelpiece,
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B

B {hieds
B P

'uoq(Voz)zr 0<r<R
d S,0 _
drrBS (r) = \
0 r>R
\
((qn’
r 0<r<R
d S,0 €o - =
a—;rEr (r) = {
{ 0 r>R

The solutions of these equations are

0 0
v
[ Hodn 'V,

5 r 0<r<R
S, 0 _
Ba (r) =
040
MpanViR ¢ e
2 r
gn®
T r 0 r R
S,0 °
’ -
E. (r)
0
q R
B % r>R
0

Applying these solutions to equation (3,52) for rc(0,R] one

obtains
2 0 0 p,q(v®)2n?
n 2 a'n_ > gqB 0 _ 8 Z 2 _
VS (r)< + 2m€0r + - rV9 (r) %, ¢ = 0

2 0420
0 0 2 2 U q (v ) n 5
Wy = - Bl s 1[3£~J rz-aﬁ nl o Do (3.58)
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must satisfy).

The final assumption simplifies the solution considerably and is
realistic so long as the beam is nonrelativistic (Krall and Trivel-
piece, 1973: 117).

Assumptions (E1) through (E5) are now applied to equations (3.40)
through (3.51). First, note that equations (3.40), (3.42), (3.43),
(3.44), (3.47), and (3.51) are all trivially satisfied, Letting the
superscript "o" denote an equilibrium solution function, the remaining

equations become

V2 (r)? | greSso 0 €,0 ;N _q0 S, 0 -
3r + SLE () +Vy (£)B_? " (r)-V_ (r)By’ (r)] = 0 (3.52)
By’ (r) = 0 (3.53)
» 0 R
E>>'(r) = 0 (3.54) :
24,0 2 S,0 '
Mo qc Vz(r) + c d_BZ’ (r) =0 (3.55) 1
dr 1
{
-1, qe?Ve(r) + 2 d (rBy’"(r)) = 0 (3.56) ;
2

r dr |
4
1d (rE2°(r)) = g n’(r) (3.57) ;

r dr €
o .
4
! Denote the constant external magnetic field, number density, and 4
- . z component of veloeity by B’,n’, and V°z, respectively, The last ]
4 p

[

¢ two equations become h
F 1
L 4 E
. g
3 :
9 .
. 4
u:‘ P,
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Nonrelativistic Rigid-Rotor Equilibrium, Consider a beam in the \3

shape of a long cylinder of c¢ircular cross-section with radius R, the i;.
axis of which coincides with the z axis of a cylindrical coordimate j:t.]
Y

system, Certain assumptions are required, in addition to those previ- jtjf
d

ously stated, far the rigid rotor equilibrium solution: ','L

E1. a (sufficiently large) uniform magnetic field in the =z
direction is the only external field

E2. the number density is constant for OXr<R, and van~
ishes on r>R

E3. the veloecity in the =z direction is constant for
O=‘_r’_<.R

E4, the radial velocity is identically zero

E5. the z component of the self magnetic field is negligi-
ble compared to the external field

Some discussion of these additional assumptions is now in order,
The external field in assumption (E1) is necessary to offset the

repulsive forces which would cause the beam to expand indefinitely.

The particles undergo a helical motion in the presence of this magnet- -.":‘
ic field, resulting in a balance between the repulsive forces (elec-
trostatic and centrifugal), and the constrictive force (magnetie) ....J
whenever the external magnetic field is sufficiently large. Other L{‘
means of confining a beam to a finite radius are possible (such as by j
reutralization by background ions (Lawson, 1977: 258), for example). fi
Assumptions (E2), (E3), and (E4) represent a simple configuration !-1

of the beam which may be useful in applications, Other combinations
of number density, axial and azimuthal velocities are possible, how- _Lz
ever (see (Davidson, 1974: 20, 21) for a general equation which these '1
III-24 j
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2nd ,
s 5
- 2
g 5 B = 4
g_tBr 0 (3.47) ]
3 BY =3 E° (3.48)
at g ar ?
5 BS = -1 3 N (3.49)
~ A
ot r ar
13 rE] =g0n (3.50)
r or €
0
193 rBi =0 (3.51)
r d9r

Note that equation (3,47) implies Bi depends only upon the value of

r , and that equation (3.51) implies that the form of B) is

% (r>0)

S —
Br(r,t) =

where K is an arbitrary constant, IfBi(r,t)is to remain bounded as

r-0, then K=0 and, thus,
B (r,t) = 0 (r>0, t20)

Thus far assumptions (A1) through (A6) have been implemented.

Assumption (A7) requires development of a specific equilibrium solu-

tion, The "rigid-rotor" equilibrium (Davidson, 1974: 30; Krall and

.' Trivelpiece, 1973: 116, 117) is well known in plasma physics., A deri-

I 7
. vation of this equilibrium solution for a nonrelativistic plasma is :
' now given., Use of this specific equilibrium is not required in gen-

' ]
7. eral, however, since any suitable equilibrium, analytically or numeri- H
A -1
;g cally derived, is suitable for the linearization process.
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apply assumptions (A5) and (A6). For these reasons vector notation is
not used here,

Assumptions (A5) and (A6), uniformity in the O and =z direc-
tions, respectively,are now invcked by neglecting terms in equations
(3.28) through (3.39) which involve %5' and 3, This results in
the following nonlinear system of equatilons (the8 zar-gument: (r,t)has been

dropped for notational convenience):

9 n=-13 (av)) (3.40)
ot r or
5 v = -vasvy + % + drES+y, BS-v B%)
PRk r— r — m-"r 97z "z9
t dr r
e e e
+ ﬁ»[Er+v9 B_-V, By ] (3.41)
vV Vv s S s
3V, = -v3 v, - ‘r3 + 1e+v B5-v _BY]
5t 3 ra7 9 - m % z'r r z
. gqr.e e_ e
- + m[Ea +V_B_ VrBz] (3.42)
’ - _ ﬂ— S S_ S
F g_\z Vr§ v, + JLE +V By -Vy Br] )
. t or i
. y
. . L
. qrpe e_ e g
- + m[Ez+VrB~’3 Vy Br] (3.43) 3
5 "
- 3
b - s _ . 2 4
2 I L (3.44) j
ct .1
9
]
® 3 EZ = -‘ngczn\"'} - C:LBE (3.45)

w—w—v
%
cr
a

3 ES = -ujqefav 4+ cF g__(rsj) (3.46)
5t r r
III-22
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( 3V o= -v3v -% 3V -vav
- 3t or £ T 3 7 “3z ©
-2 qreS s _ s qrpe e_ e
m + e, +v By -Vy B ] + I[EC+v B, vy B (3.31)
g s _ _ 2 arl 3 s 9 _.s
%?Er Hpac Vr *oc l:r aaBz" Bz% ] (3.32)
N BS L 2 273 o8 _ 3 s
%E% N quc % t e [BzBr BrBz] (3.33)
S S = =1 2 2 _l. T) S - l é_ S
chZ R Vz *oe [r arrBa r BSBr] (3.34)
~ S ~ S S
3 B> =3 EZ - 13 FE (3.35)
5t ¢ 5z r a3 ?
o
- 3 B° =3 E° -3 E° (3.36)
| 53¢ 35 %2 3z T
K Qe 5 BS = 193 E° - 13 rES (3.37)
v a—‘ Z — = r - 3
- t r o? r or
e ~ s
1 5 rE’ + 1 B_A_ESS + _Q__Ej = g n (3.38)
p r or r 99 dz €q
. 13 rB° + 13 B> +3 85 =0 (3.39)
- — r = == 3 = z ’
= ar r o9 5z
b .
o
:j‘
# i A far more compact statement of these equations is usually given in

plasma physics texts by the use of vector notation (see (Krall and
. : Trivelpiece, 1973: 85, 86; Davidson, 1974: 14, 15; Shkarofsky et al,
1963: 12, 21; Montgomery and Tidman, 1964: 12)). These compact forms,
however, can be confusing to those not familiar with the notation,

& Furthermore, the detailed expressions above are needed in order to
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orthogonal system which has been rotated about the z-axis by the

angle 3:
cos 3 sin 3 0
r .
T\' = -sin 9 cos 9 0
0 0 1
— —
. N o 7 T T
Letting [»1,'l2,~.3] represent [V1’V2’V3] ) [Ex’Ez’Eaj y or

LB1 ,Ba,ngT, then, the new functions [wr,d@ ,wz] " are defired by

]

lr].‘ 1pl
r

Iy =

¥ Tx lJJz

1 )

v, vy

Using these definitions, equations (3.22) through (3,27) can be

expressed in terms of the new unknown functions n , Vo Yy WV Ei '
‘3\0 s s s _s . ) 5

B, E, yBy,B_, with independent variables (r,3 ,z,t) (the argu-

ment ( r,t) is dropped for notational convenience):

7 5n=-_1<1v)—a_nv - 13 nV, - 3 nv (3.28)
. 5t N Y3 YT a9 37 ¢
b
. R \Y \]2
1 avr=—vr3_vr—j_avr+_9—vzav
5t or r 39 r 3z r
r!
b .S . S . S A e B S S (3'29)
: + SRS AU - -V
] q.E] V. B \213}3“ + g[Erﬂ3 B \283]
) m m
|
T
‘L. LVLom v v - \-_33 Vy - eV - v,3av,
. t Sr r 5 r 5z
. . (3.30)
+aley+v BS-v 851 + gqlEy+v_BS-v BS]
~ ’ z z r 2z
m
;i'_.
@
[
- .
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with u’  explicitly defined in equation (3.60)., The operator

reduces considerably, in this case, as follcws:

[ 0 ] [ o 7]
Sy~ ur:,s - V;gs Bocg
- 0 - [}
S, ¥ VS, =B g,
o a 1y, + owrd 0
. G =g : ‘ + 2 (3.67)
0 0
L 0 0
o
0 Q
0 0
e oo - —

The nonlinear & can be approximated, then, by

N
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,u®) + 8C o (8E®,5B%,8u(t)) (3.68)

Using the approximations of equations (3.62), (3.68) in equation

(3.61) yields

d .
Trou(o) = S5+ Bu(o) = F(e) + 6(e%r",3%0 ", u")
*3F 0 Cule)) + 36 5 (SE%,8B%,5u(e))
This implies, then, that
d . . .
qedu(e) = 3F o (Su(t)) + 86 o (SE®,5B%,8u(t)) (3.69)

—z -

This equation represents a linear approximation to the nonlinear sys-
Qe tem of equations (3.40) through (3.46) and (3.48) through (3.50). A
similar model can be developed for the region r>R . In general,
these two models must be solved simultaneously, and their solutions
must satisfy further mathematical constraints at r=R . Consequently,
only small excursions of the actual beam radius from the equilibrium
solution radius are allowed before a relinearization must be per-

formed.

Linear Model. To summarize the development thus far, the
expressions derived in equations (3.64) and (3.67), based on the rigid

rotor assumptions, are substituted into equation (3.69) to yield
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¥

L - 0% s

."_‘ ‘-_ -n Dr Uz(t)

;‘ u)zv°z q

; -2w6u3(t) - 5%;—r5uu(t) + m5us(t)

3 i 99

L - 5ue(t) -2 rcSug(t)

208u, (£) + 28u_(r)

w2y
z q
s soztrsu, (6) + dsu (¢)
a—‘gbu(t) >
2.0
-H,9c’n Suz(t)
Wogefwrdu, (£) - uyqe®n®Su, (£) - c’D _Sugy(t)
_n 240 ~ 2.0 2R
H,qc Vzﬁul(t) W, dc’n 5uu(t) + c Dréue(t)
D Su (t)
| —Dréus(t) _ .
4
i
*
— — —
0 0 o]
0 € _ e - 0 e N
B°Su, (t) SE_(r,t) - wrdBS (r,t) - V26By (t) g
—
-B%8u, (t) SEy (r,t) + V28BS (r,t) L,
0 GEz(r,t) +wr6B:(r,t) %
+ 9 0 + 4 0 (3.70) -
m m _J
0 0 L
[ 0 0 -
—
[! 0o _] _ 0 . -
) 1
- 1
s 1
h h
X <
o ]
h
3 f‘
L =
- '.\
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given by

u-ufly < a
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and
. [ 0 ] o
SES(r,t) - wréBo(r,t) - v®sBE( ) ]
b - r ) O z y Zu 9 r, t b—]
B 3
g q e 0z ge .
: g(t) o SEa(r,t) + VzaBr(r,t) =
2 Bt
p R e A e I:.
3 oEZ(r,t) +wrvBr(r,t) _3
'? 0 .1
- 0 1]
- 0 o
A 2
0 !-‘
0 5
F - L —
.'_’
i . _ i
An appropiate initial condition for this system of equations is ).
any "small"™ perturbation from the equilibrium solution 30 . Let u ::;E
be any initial condition for the system of equations (3.61) such that .

where d is a sufficiently small positive constant, The corresponding

initial condition for equation (3.71), for any such u, then, 1is
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The Electrostatic Approximation Model

LT

An additiomal assumption simplifies the single degree of freedom

model considerably: b
A8. rerturbed self magnetic field effects are negligible ;

This assumption is occasionmally invoked in the study of plasmas and is
referred to as the "electrostatic approximation™ (Davidson, 1974: 42),

The linear model imp)ied by assumptions (A1) through (A7) and the

PR Sl T TNy VI 2 N O

electrostatic approximation, assumption (A8), is now developed,

Assumption (A8) elimimates the equations for w,(t) and w, (t)

bl on.

o

(see equation (3.71)) immediately since these represent (approxima-
tions to) the time derivatives of 6§f(r,t) and <SB§(r,t), respec=

tively. Furthermore, the equations for W (t) and w, (t) are elimi-

et ek~ bacacde bk

mted in the electrostatic approximation. This is justified as fol-

lows. Consider equation (3,28) for the perturbed electric field

BES(x,t) 3

3
-‘:"k\’{
1 X,
J J

vSEIS((_:i,t) = 2798, (x,t) = 0 (i = 1,2,3)

Since the curl of the perturbed field vanishes, it must be expressible

as the gradient of a scalar field (Marion, 1965: 105-108):

e .

9 . 3 .
UEl(l(_’t) - -Eb(,ﬁ’t) (l = 1’213)

Expression of this result in the cylindrical coordinate system and

v e
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- applying ansueptions (A5) and (A0) viclds
G (ryt) = fr (r,t) = 0
) z
Couscoueniiy, the canutions Involving w_ (t) and v, ()
l can be neclectad In the svsten of cauntions (3.71),
. As oo ovesult o the forcgpoiay, the lincar single degree
. of drcecdon wodol et the last scection sitopli jes to
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Assumptions E! through E5 and Al through A8 have been introduced
in order to develop a sufficiently simple linear model for a demon-
y stration of semigroup theory techniques, These techniques are not

dependent upon the numerous assumptions invoked above. The rigid
rotor equilibrium is merely one of many equilibrium solutions; in
i fact, numerically generated equilibria can be developed for a differ-
ent set of assumptions than El through E5. The fundamental problems
to be addressed in any infinite-dimensional system remain the same,

however. One wust demonstrate that the model, with appropriately

chosen function spaces, is well posed. This is equivalent to showing
the operator A in the abstract Cauchy problem (equations (2.1),

| (2.2)) 1is in one of the C-classes described in Chapter II., In Chap-

0 il

i

ter IV, the electrostatic approximation model is used to illustrate
the theory. Specifically, appropriate spaces are chosen and an ana-
lytic solution 1is obtained. In more complicated models, numerical %ﬁ
methods will generally be required a.d determination of appropriate
spaces will wundoubtedly be more difficult, but the basic principles

remain the same. l1

Conclusion

Models of the dynamic behavior of a charged particle beam have

)
—

been developed which vary widely in complexity. The most accurate S

models consist of the microscopic descriptions and involve six inde- :ﬂ
pendent space-like variables, Macroscopic descriptions are less com~

plex and involve at most three independent spatial variables, but ;j

B
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require additional assumptions. Linearizations of both types of

descriptions yield models with the abstract Cauchy problem structure.

A single degree of freedom linear perturbation model has been
developed based on a physically reasonable equilibrium solution. This
model 1s mnovel in that it incorporates the effects of the external
fields as controls, and it is expressed as an abstract Cauchy problem,
As a result, a new particle beam model is now available to researchers
in the control community in a form which is directly useful for fur-
ther analysis,

The final result of this chapter has been the development of a
particularly simple model which has a closed-form solution. It 1is
valid whenever the perturbed self magnetic field effects are negligi-
ble, and this is the situation so long as all perturbed velocity com~
ponents are sufficiently small. A solution of this model is developed

in the following chapter.
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IV. Analysis of the Electrostatic Approximatiqon Model

Intreduction

v

1

An analysis of the differential equations in the electrostatic

A

L

o

approximation model is now presented, At the outset, c¢onveptional

methods of classifying systems of partial differential equations are

PN S SO

discussed. The system of equations (3.72) does not fall into any of

these conventiomal classifications, at least by most authors' defini-

tions. In fact, no treatment of systems with this particular struc- ,
') ture could be found, by this author, in control theory literature, l:i

Consequently, fundamental concepts must be applied to the problem at
hand.

To this end, a simple example of a system which is similar to

s A l S ;J.-_"-. .

that of equation (3.72) is introduced. This trivial example provides

insight as to how one might choose an appropriate underlying Banach

P
RN

space far these types of systems. L-ﬂi

Both physical considerations and insight from this example are ‘:
then used in selecting a Banach space for the electrostatic approxima-
tion model, The matrix of operators in equation (3.72) is shown to be 'j
the generator of a strongly continuous group on this space, The asso- J‘
ciated semigroup of operators is then constructed, and a closed-form .;
solution of the homogeneous abstract Cauchy problem associated with ‘;

e . - S L .
(O
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equation (3,72) is given, The nonhomogeneous solution follows immedi-

ately, in light of Thearem 2,12, far a broad class of inputs,

Conventional System Clasgifications

Consider the following system of partial differential equations:

%{E(x’t) = A(X,t)%;g(X,t) + b(usx,t) (4.1)

The unknown vectar-valued function U assumes values in Rn, A 1is an
nth -order matrix-valued function of (x,t), and b is a (possibly non-
linear) function of u as well as (x,t), Systems of equations with
this structure are sometimes classified as hyperbolic, parabolic or
elliptic,

Equation (4.1) i1s called hyperbolic at the point (x,t) if

(1) all roots of the polynomial P(A;x,t), defined by
P(A;x,t) = det[AI - A(x,t)]

are real and (2) if there exists a full set of linearly independent
eigenvectaors (Courant and Hilbert, 1962: 425; Garabedian, 1964: 96).
Some authors prefer to define system (4.1) as hyperbolic only if the
polynomial P(A;x,t) has n distinet roots, while others refer to

such a system as "strictly hyperbolic™ or Thyperbolic in the mnarrow

R I S fateo . L
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sense" (Zachmonoglou and Thoe, 1976: 362)., With this minor exception,
there 1is good agreement among authors of partial differential equa=-
tions texts on the definition of hyperbolic systems, If the matrix
A(x,t) is symmetric, then it is well known that a full set of line-
early independent eigenvectors exists, Consequently, various treat-
ments of equation (4.1) have been undertaken under this simplifying
assumption (Russell, 1978: 64T; Fattorini, 1983: 146).

There is far less agreement on the definition of a parabolic
system, however, Hellwig (1964: 70) defines system (4.1) to be par-
abolic if the polynomial P(A;x,t) has precisely V distinet real
roots, where l<v<n-1 | Few authors allcw such a broad definition,
however, Various restrictions are usually imposed on equations with
the structure of (4,1) in order to preserve some of the properties of
scalar parabolic equations (e.g., the heat equation) (Eidel'man, 1969:
3). As a result of various authors' viewpoints, we have systems of
equations which are defired as "parabolic in the sense of Petrovskiy,"
"parabolic in the sense of Shilov," or "parabolic in the sense of
Shirotam™ (Eidel'man, 1969: 444-453). No universally accepted defini-
tion of a parabolic system of partial differential equations has yet
emerged,

While there is general agreement on the definition of an elliptic
system, many texts on partial differential equations omit any dis-
cussion of such systems. Both Hellwig (1964: 70) and Zachmanoglou and
Thoe (1976: 362) define the system (4,1) to be elliptic at the point
(x,t) if the polynomial P(A;x,t) has no real eigenvalues, Ellip-

tic systems do not often arise in initial value problems (Courant and

IvV=-3
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and,

— — 6Ee(x,t)
0 0 0 0 0 0 r
5E3e(x,t)
l 0 0 0 ~-y° —x
Z
SES (x,t)
zZ
hix,t) = 0 1 0 v; 0 0
3B (x,t)
r
0 0 1 WX 0 0
SBae(x,t)
0 0 0 0 0 0 .
- | OBi(x,t)

Consequently, the polynomial P(A;x,t) is independent of ({x,t),

and is given by

o

1
>

P(M,t) = det(AI - A )

It 1is easily verified that there are only four linearly independent
eigenvectors associated with the eigenvalue * = 0, Hence, this sys-
tem 1is neither hyperbolic nor elliptie, Furthermore, it is not para-
bolic under any of the definitions mentioned above except for Hell=-
wig's. Unfortunately, in contrast to the hyperbolic case, no exten-
sive treatments of systems of this type have been found in control
literature, so equation (4.2) will be analyzed from fundamental con-
cepts, To this end, a simple example of such a parabolic system is

useful,

c e .
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An Illustrative Example

Consider the two coupled partial differential equations

Su, (x,t) = ~—u, (x,6) (4.3)
g—t—uz(x,t) =0 (4.4)
with initial data
u, (x,0) = u](x) (4.5)
u, (x,0) = uj(x) (4.6)

for 0<x<1l, t>0. Equations (4.3), (4.4) have the structure

of equation (4.1) with b(u;x,t) = 0, and

0 -1
A(x,t) = A =
0 0
Note that A has the single eigenvalue A = 0, and there 1is

but on linearly independent eigenvector associated with this

eigenvalue. The following two propositions are now proven:

Proposition 1: The abstract Cauchy problem of
equations (4.3) - (4.6) is not
well posed for X,= X, = L2(0,1).

Proposition 2: The abstract Cauchy problem of
equations (4.3) - (4.6) is well
posed for X, = LZ(O,l),

X, = H?(0,1).
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Proof of Proposition 1

Analysis of the operator

i
|
|
|

d
0 T dx
A =
0 0
reveals that, for z # 0,
1 14
z z?2 dx
(zI - A)'lg = g
0 —
|_- b4
—

Now (zI - A)~! is not in the set B(X) for any value of z
since, for the specific choice

'S, g(x) = e X

[N

one has that

. [
- _ X E
= 2z°
. (zI - A) Tlg(x) =
' L
‘:L XZ
- z
:“ s 4
-
- -k 2 -1 .
., However, X ¢ X, = L*(0,1), and so (zI -~ A) ¢B(X).
= Consequently, the spectrum of A is the entire complex
[ ) plane and, thus, A g 6(M,8) for any pair (M,B) (recall
- Definition 2.3, page II-10). By Theorem 2.2, then, the
F[ abstract Cauchy problem (4.3) - (4.6) is not well posed.
-
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Proof of Propoci tion 2

In this casc, A:B(X) since i

Lodry
d= , . ’
! 02 h d4 I
bas|” = R
H | fdx 2|
X U { X
1
. 2 12
02 d
< l;f [i -+ ‘Zf!! ***** {'\!
= Thy toellx da 2fX
1
: 2
S TP N TN N
] ‘“X o<y - A
) Lo : )
By Theoren 706, then A poeneraies o ostrongly centinuous
group (Which fs alao a styonsgiy continuous serdrioun for
t - 0). Thas, by dheoven 2.2, the ~hatiact Coucny
probico (1.3) = (4.6) s oweldi posced.
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olution of the Electrostatic Approximation Model

The electrostatic approximation model developed in Chapter III

(see equation (3.72)) is a nonhomogeneous abstract Cauchy problem:

d
d—tz(t) = Aw(t) + g(t) (4.7)
E(O) = Ko (uta)
where
_—b -n°D 0 0 0
X
0 0 a,, a,,x a,s
Qr
A = 0 -a,, 0 0 0
0 -a, X 0] 0 0
L_P ag, 0 0 q__
The symbols a.. represent constants in the matrix of operators in

1]

equation (3.72), and the operator 5x is defined on page III-31. The

mapping w takes values from the nonegative real line into a function

space X X, =— 1i,e.,
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Sn(x,t) f
GVr(x,t)
w(t) = SVG (x,t) e X (£20)
GVz(x,t) 1
]
L.._SEr(X’t.)__ ;
Analysis of the illustrative example above, equations (4.3) - (4.6), F

suggests that the choice of X has a profound effect on the well- 1
posedness of such systems, Specification of the Xi is now made based
L! upon both the physics of the problem and mathematical insight obtained
' from the example,

If n(r,t) denotes the number density in a cylindrical beam of

PO

radius R with axial and azimuthal symmetry, then the total number of 1

particles in a unit length of the beam at time t, N(t) , is given by

R
N(t) = Zi/-n(r,t)rdr

0

The number density can be expressed as an equilibrium value, n® (r) ’

TV Yy vy vvyy
N " Sy ERAR RS
aeatacindiics Sedakadedendes ettt cdenstincc

plus a perturbed number density Sn(r,t), and thus,

-_v
v
L 2

Y
® .
pe)

R R
N(t) = 27rfn°(r)rdr + ZTr[cSn(r,t)rdr

0 0
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One npatural choice far the norm of the perturbation ¢&n(r,t), then,

is the L!(0,R) norm of rén(r,t):

R
“rén(r,t)"Ll(o,R) = j’]ﬁn(r,t)rldr

B 0
Defire M!(O,R) to be the space consisting of all functions g for

. which

“g(X)nml(o,R) - HXg(X)“Ll(O,R)

In Appendix C it is proven that M! (0,R) is a Banach space, The

space X is now defired to be M! (0,R),
The Sobolev space H' (0,R) is selected for the spaces X, ]
through X, Unlike the choice far X, , this selection is motivated

more by the results of the example in the last section than by physi-

n cal considerations. {

Since the spaces X, through X, chosen above are all Banach

5

. spaces, the Cartesian product X = 'Hlxi becomes a Banach space,
i=

For convenience, defire the norm of the space X by

k
5
. _ max !
lels = 1135 { Qe ;
|
. With this choice for X, the linear operator A in the electrostatic
Iv-11
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approximation model can be shown to be a bounded operator,

emma

5
Lot ¥ = Ty, with ¥, = ¥R, K = X, = X, -
i=
= H!'(0,R) , and define the operator A:X>X 1y

If R<® then AcB(X).

0 -n'D 0 0 0

0 0 a5, d,4X a5
Af = 0 -a,, 0 0 0 ;
i
0 —a, X 0 0 0 ]
B 1
]
0 a., 0 0 0 .
L. p
[
]

Proof

Bl dk

In order to show that AcB(X), it is sufficient to show
that

4
o
L

lagh < x|

for some K > 0 (see page II-3). Denoting Af by g, ine-
qualities far |z, are derived as follows:
“4

Iv=-12 ]
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Consequently,

”glnx1 = Clz“f:"x2

“gz”X
2
ngnxz = Jlaysfy toaxfy+oa, f )
X2
By the triangle inequality, then, and
since X, =X, =X, =X,

P e L e AT e R e

The middle term on the right hand side
obeys the following inequalities:

5 R
"kauék = ersz(x)2 + [Dx(xfk(x))jzdx

R
xzfu(x)z + 2[fq(X)2 + (xf;(X))Zde

R
2(x*+2)[f, (x)% + £, (x)*]dx

A

/
fo

A

R
2(R2+2)J[fu(x)2 + fL(x)de
0

2(R*+2) |IE,

I X
PAN

and so

lleullxg < [2(R

2

1
4+ 2)]*E
l[ u"xl+

Iv=-14
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As a result,

”glux

A
©

‘ Zagufanxa + [azqf/‘__—_Z(RH—z)”fhﬂX“ + fazsf”fsﬂ}::

= Czs”fenx3 + Czkufu“.\'“ + Czsnfs”XS

”—azafz”xa B Iaza”lfzuxz = Caz”le

[13°]
w
gl
w
1]

%2

aQ
s
3
=)
1

”_azu}‘lelxI+ < Iazul 2(R2+2)“f2”x2 = cuzufz“Xz

(The argument is identical to that for
the |[|xf term above,)
<.,

J
]
)
on
[as
%
1

:as:f”fz”xz - CSZHfZHXZ

IV-15

RO, VL. R SR oy LSO d o V) o P SR WP U Sl WPy SRy W T W o PP W G ay ng Yu Wy UY

-, T
P SR

L WY




PPl s

From these inequalities, it can be seen that the norm of Af
satisfies the following:

max

el = o170 s {leal

S max {C12”f2";{2 ’ cza”fanx3 + Czu“fu”xLﬁ + Czsufsnxs ’

C3zufz“X2 ’ cuz“fzuxz’ Csz“fzuxz

5

max
LT ) el | s

j::

The constant K is given by

max

K = i=1l,...5 Cij
J:

and the C.. are either defined as above or are zero if not

previously “defined. Since A is linear and "Aiﬂ)(;i("_f_ﬂx,
A e B(X), s )

Proof of the following thearem is immediate in light of this

lemma and Theorems 2,2 and 2,6:

Theorem 4,1

If the lirear operator A and the Banach space X are
defired as above, then the homogeneous abstract Cauchy prob-
lem associated with equation (4.7)

d
E?E(t)

Aw(t) (£20)

[s3

£
~
o
1]
| €
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is well posed.,

Also from Thecrem 2.6, the solution of the homogeneous problem is

simply

w(t) = S(t)w’

where S(t) is the strongly continuous group generated by A :

: Jad
s(t) = gin Sele

A closed-form expression for S(t) is now developed,

Computation of S(t) involves the development of general terms in

the infinite series indicated above, The work is simplified by the

use of a partitioned matrix expression for A:

L".

-~ 1

0 -n°5,( 0 0 o | B

‘ L

0 0 a,, a,,x a, . ¢ ¥ o 1

3

A= 0 -a, 0 0 0o |= 10 0 ¢ R
0 -a. x 0 0 0 [0 H O

.

0 a.., 0 0 0 |

Writing out the first few terms of A one obtains

Iv-17
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noisy envirorment,

Parameter estimation should also be pursued since some quantities
in the model are not likely to be known with great certainty (e.g,
Vi, - , and n ), 1In fact, the relatively new method known as mul-

Z

tiple model adaptive control (Maybeck, 1982: 253) could prove useful

as well,

Full Linear Macroscopic Model. An examiration of the lirear

macroscopic model of equations (3.66) and (3.67) reveals that, 1like
the electrostatic approximation model, this system of nine partial
differential equations is classified as a parabolic system under Hell-
wig's definition, Writing equation (3.66) in the form of equation

(4.1), one has

[0 -ne o 0 0 0 0 o 0 |
0 0 o 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 6 0 0 0 0
(x,t) = A = 0 0 c 0 o0 o0 0 0 0
0 0 o 0 o0 o0 0 0 -c?
0 0 O 0 0 0 0 c? 0
0 0 0O 0 0 0 1 o0 0
|0 0 o 0 o0 -1 0 0 0|
and, thus,
oAl = 25 o eyt

It is eagily verified that only four lirearly independent eigenvectors
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number density, velocity field, and radial electric field, under the
assumptions required for the electrostatic approximation model, It is
not yet clear whether an arbitrary state can be attained through the
action of allowable controls, 1In the language of control theary, one
would like to establish whether the electrostatic approximation model
is ontrollable, approximately controllable (Russell, 1978: 643), or
rneither,

A second control problem is that of synthesizing a regulator to
maintain the -equilibrium solution when the model is subjected to
unknown (or unmodelled) inputs. Generating a stable configuration for
a plasma in the laboratory is frequently difficult., A regulator based
on the electrostatic approximation model might improve the situation
considerably.

Evertually a controller which would enable changing the state of
the beam to a new equilibrium might be sought. Adaptive control would
be necessary if the new equilibrium were to be far from the original
equilibrium,

Observability Problem. A means of detecting the state of the

system is required in order to design a controller, Analytical stud=-
ies of various sensor configurations can now be performed with the aid
of the electrostatic approximation model and its solution,

Peterministic studies are recommended first, to determine general

sensor characteristics required in order for the system to be observe

able or distinguishable (Russell, 1978: 645), Once some general
requirements of sensors are determined, stochastic analyses should be

perfarmed to determine how well one can estimate the beam state in a
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(see (Courant and Hilbert, 1962:172,173)). These models do not fit
into most classification schemes for systems of first-order partial
differential equations: however, they appear to be physically signif-
icant, In fact, the electrostatic approximation model has a nonstand-
ard structure, yet a unique solution to this system does exist as 1is
shown in Chapter IV. Perhaps this result indicates a need for a bet~
ter classification system than presently exists. (Semigroup theory,
as applied to the abstract Cauchy problem, may provide insight in this
direction,)

Contributions to the field of plasma physics consist of (1) a
solution of the electrostatic approximation model (Chapter IV), and,
(2) an introduction to (and a demonstration of) the application of
semigroup theaory to collisionless plasma dynamics problems, The solu-
tion of the electrostatic approximation model is a closed-form solu=-
tion and has not appeared, evidently, previously in the 1literature,
It describes the electromechanical oscillations of a very simple beam
dynamices model, Under certain approximating conditions, the beam 1is
shown to oscillate at the plasma frequency as one might expect. The
full potential of the techniques employed herein has only begun to be

realized in this area of plasma physics,

Suggested Areas for Further Research

Control Problem. Equation (4,10) provides an explicit means of

predicting the effects of external electric and magnetic fields on the
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Y. Summary and Suggested Areas for Further Research

Summary of Research Results

Significant contributions have been made in this research effort
to three distinct fields: (1) control theory, (2) applied mathematics,
and (3) plasma physics. These contributions are now briefly dis-
cussed.

The single most significant accomplishment in this research 1is
the laying of a foundation for application of modern control theory
techniques to the beam dynamics problem, This foundation consists of
three separate blocks, First, a concise description of relevant semi-
group theory results is given., Secondly, a full spectrum of beam
dynamics models 1is developed. Finally, a specific model has been
exploited which fully illustrates semigroup theory techniques. The
closed-form solution of this model, with external controls included,
is in itself significant, but more importantly, the solution process
used serves as a pattern for future control theory research efforts.

Two aspects of this research are of interest to applied
nathematicians. Development of semigroup theory into a useful tool
requires more documented accounts of actual applications: this report
represents one additional such account. Another significant result of
interest to applied mathematicilans is the form of some of the systems

of PDE in Chapter III, The structure of some of the models therein is

neither totally hyperbolic nor hyperbolic in the more general sense
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number density, velocity field, and radial electric field evolve in
time from an arbitrary initial condition, but it predicts their evolu-
tion in the presence of external fields as well. In a broader con-
text, by using solution techniques that involve elements of the semi-
group theary of operators, this powerful and elegant theory is now
more accessible to both plasma physicists and control theory research-

ers,
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definition, but no extensive techniques for solving such systems exist
in the 1literature, By an application of semigroup theory, and by a
careful selection of the underlying Banach space, however, this model

was transformed intoc a well-posed abstract Cauchy problem and a

closed-form solution was derived.,

One significant conclusion that can be drawn from these develop~
ments is that systems of lirear partial differential equations can be
successfully analyzed by semigroup theory techniques regardless of
their conventional classificatiop, Various researchers in this field

have recognized this fact, For example, Pazy (1983; 105, 110) classi-

fies equations of the farm

"

%—t-g(t) = Aw(t) (t > 0) .

as either hyperbolic or parabolic depending upon whether A generates '

') a strongly continuous semigroup or an analytic semigroup (defined in LT
(Pazy, 1983: 60)), respectively. Also, Fattorini (1983; 173) classi-

fies equations with this structure as abstract parabolic if every gen- \;

eralized solution of the system is continuously differentiable, and he -]

relates this to the analytic nature of the semigroup, The electro-

static approximation model provides a concrete example of the need for

(g Te e Tw e e
Nl VoA

EE A
) ot
Roisla ada s

a classification scheme which is based on the properties of the opera-

tor A in relation to the underlying Banach space X,

Several contributions to both plasma physics and control theory

-y,

have been made in this chapter, 1In the nmarrower sense, development of

a closed=-form solution of the electrostatic approxmation model 1is

a'a'ala. a'a‘d

significant in itself, This solution not only describes how the
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brackets is essentially unity and the variation of {! with x can be

ignored. Supposing this to be the situation for now,

In Brillouin flow conditions (see the subsection "Nonrelativistic

Rigid-Rotor Equilibrium" in Chapter III), wz = Zw; y and

This represents a limiting situation since the rigid rotor equilibrium

can exist only if wz > Zw; —_, i.e., 2> wp.

On the other hand, if for some combinmation of x, V; and wp y &
does vary substantially with the spatial location, it can still be
interpreted as a frequency, but a different frequency of oscillation

would exist at each point within the beam,
Coneclusion

Conventional methors of classifying systems of partial differen-
tial equations were discussed early in this chapter, The electro-

static approximation model was shown to be parabolic under Hellwig's

Iv-25
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with dinitial condition _v_r°, provided the corresponding components of

w’ also satisfy Poisson's equation:

0 _ 0
wa = g—wl
0
Consequently, the initial condition vector y_° is constrained by phys-

ical condiderations to lie in the subspace Q defined by

The Frequeney 2. 1In the expression for the semigroup S(t),
equation (4.9), the symbol © is seen to appear frequently., The phys-
ical significance of ! is now discussed,

In the derivation of S(t), the symbol & was defined as

wzvi 2 L
= - 2 b 2 2
Q (w 2w)° + < 5oz ) ¥ + wp

Using the definition of @ and some algebra one has

For any reasonable combimation of X, V; and @ the Cfactor in

p'

V=24
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For some applications, the requirement for g(t) to be continuously
differentiable is too strict. Meaning can be given to the expression
on the right hand side of equation (4.10) for a much broader class of.
inputs, For example, even if g is in the set L! (0,T), this expres-

sion is termed a "weak" or "mild" solution (Pazy, 1983: 108; Fattor-

ini, 1983: 89).
omments on the Solution

Two additional topics concerning the solution, the effect of
Poisson's equation on the initial conditions, and the physical signif-
icance of the frequency {! , are now discussed.,

Initial Conditions. Although the solution, equation (4.10), is
correct for any initial condition vector Eo in X, there is a physi-

cal restriction on 20. Poisson's equation (see equation (3.50))

D ES(x,t) = -::L—n(x,t)

X r 0

has been used in the rigid rotor equilibrium derivation of n’ (x) and g
A
E] (x) , but the perturbed quantities w, (t) = Sn(x,t), and w, (t) .
h |
= 5Ei(x,t) must satisfy Poisson's equation as well: A
. 3

was(t) eowl(t)
R
2
It 1s easily verified that compopents w, (t) and w.(t) obey Pois- :1
son's equation, if w(t) is the solution of the homogeneous equation }
B
& =23 :
¢ ~
b Y
- )
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Similar results follow for the remainder of the elements of

S(t)., The complete expression for the strongly continuous group is

shown in the figure on the following page. The notation "(:)" in the

top row is used to indicate that '5X operates on the product of each

initial condition compornent with the expression within the brackets,
0

For example, the (1,2) element of S (t)would operate on v, as fol-

lows:

[s(e)],,wl(x) = -n°D_ [Eigﬁiwg(xﬂ

The solution of the homogeneous problem is now complete,

The Nonhomogeneous Solution. Recall from equation (3.72) that

522 e, 00
— — Er(x,t)
0 0 0 0 0 0
§ e(x,t)
1 0 0 0 -v; —wx E
GE:(x,t)
g(t) = 0 1 0 v; 0 0
SBi(x,t)
0 0 1 Wx 0 0
5g§(x,t)
0 0 0 0 0 0
GB:(x,t)

By Theocrem 2,12, if the external fields are such that g(t) is contin-
uwously differentiable for all te[0,T], then the nonhomogenecus equa-

tion (4.7) has the solution

R
w(t) = S(t)w’ + fS(t—s)g_(S)dS (0gtsT) (4.10)
Iv-21
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0o o FG (HG) <! 0 F(cm)©
2k 2k+1
t k t
S(t)=I+ _t
(t) Z 20710 (6B 0 + T
k=1 k k=0
0 o CONE LREICTNN
The (1,2) element of S(t) can be summed as follows:
= 2k+1 .
7 _
[S(t)le = Z —(2k+l)!F(GH)
k=0
2k+1 K
0
(2k+l)'( n Dx)[—ags_(azux)z + a25a52]
k=0
An examination of GH reveals that GH<O:
— _a2 - 2
GH = -aj, (a,,x)" + a,za,,
2 mZEV; 2 2
= —(wC—Zw) - 5ez |X - wp
Letting 2°= -GH, then, one has
(GH)k - (_1)k Q2K
s k
With this form for (GH)
2k 2k+1
[S(t)] "UOB (l) t 92k+1
12 X 0 (2k+1)!

0

C(HG)k

0
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S(t)=I+t 0

T

+ﬁ 0
| O
[0
+t}—j 0
0

)

(Note that since

F 0 0 0 HG
0 ¢ |+ ;j 0 GH O
H 0 0 0 HG
F(GH) 0 0 0 FGHG
0 G(HG)| + %% 0 (GH)? 0
H(GH) 0 0 0 (HG)2
F(GH)? 0 0 o0 FG(HG)?
0 G(HG)2| + %; 0 (cH)?® 0 +
H(GH)? 0 0 0 (HG)®

F is an operator, and G, H are matrices, the aorder

of these factars in the expressions is crucial,) A general term of

this expansion can be seen to be

| 0
2ol

L0

B
A
3!

| °

) -
F(GH) ° 0
j-1
0 G(HG) % j = 1,3,5,
j=1
H(GH) 2 0
i _7]
0 FG(HG)Z
i
(cH)? 0 i = 2,4,6,
i
0 (16) 2

After some manipulation, then, S(t) can be expressed as

Iv-18
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are associated with the eigenvalue A=0 ., The space X must be
chosen with this in mind if the model of equations (3.66) and (3.67)
is to be a well posed abstract Cauchy problem, A solution of this
model would be beneficial since, unlike the electrostatic approxima-
tion model, electromagnetic effects are included, By comparing the

solutions of the two models, then, an assessment of the shortcomings

of the electrostatic approximation model can be made,

L Two Degree of Freedom Model, Although much can be learned from a

F single degree of freedom model, many of the current particle beam con-

C trol elements require at least a two degree of freedom model, Analy-
sis of the dynamic behavior of a beam inside a quadrupole with vari-
able magnetic field, for example, could suggest totally new means of

beam control, It is recommended that an equilibrium solution be

sought for a beam with assumption (A6), the axial symmetry assumption,
removed,

System Classification, As was mentioned in Chapter IV, con=
ventional schemes for classifying systems of partial differential
equations are not well suited to control applications, It is reconm-
mended that further investigatibn be conducted to establish classifi-

cations of such systems based upon both the operator A in the

abstract Cauchy problem, equation (2.1), and the underlying Banach

Dt e s 4

L] )

space X,

B e 4
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Appendix A. Mathematical Symbols

Symbols that are frequently used in Chapter II are summarized

below, Page numbers are given, following each definition, to indicate

where the symbol was first introduced in the text.

f:A>B

D(f), R(f)

Py, vi@)

el

(u, v)

L L rpame————— /LA S S
®-.. T Loe o A
. A . . . ‘l .0 . - :

B(X,Y), B(X)

L o o e e 2 P ———
P A B PR

a function f which maps each element of set A
into an element of set B (II-1)

domain, range of the function f (II-1)
real, complex field of scalars (II-2)
real part of complex number z (II-10)

re.l, complex, n-fold Cartesian product of R, C
(11-2)

intervals in R, R"(II-2)

Cartesian product of spaces Xi , 1 = 1,2,...n
(II-2)

Lebesgue, Sobolev space of order P, 9 over
interval  (II-2)

norm of f on space X (II-2)
inner product of u, v (II-24)

set of all bounded lirear operators from X into
Y, from X into X (II-3)
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Cliaiion wvn g on A0stg ‘A

C(X,Y), €(X) set of all closed linear operators from subset of
X into Y, from subset of X into X (II-5,6)
C, () set of all functions which are continuous, have
continuous derivatives of all orders, and which
have support bounded and contaired in 2 (II-6)
cla,b] set of all functions which are continuous in the
sup norm on [a,b] (II-27)
3
LllOC(Q) set of functions in L! (k) for every bounded, K
Lebesgue measurable set K with closure contained 1
in Q@ (II-6) d
., !
dx’ “x° ordinmary, partial differentiation symbols -
5 (generalized derivatives implied unless otherwise 1
~—, D stated) (II-6,7) g
- 5x b i
- k k ! kl <
o a a !
o pk axlfl... xkn , where |k| = k., :
n i=1 )
k=(k;,... k ), with k. nonegative integers for ;
. i=1,...n (II-T) )
N r
OF <5FX Gateaux, Frechet derivative of operator F at x .
(11-8) i
p (A) resolvent set of linear operator A (II-9) .:
.”. ?
y Y
o g (A) spectrum of linear operator A (II-9) ]
3 ]
f R(z,A) (zI-A)7" where zep(A) (II-10) k
h’ p
o ]
- G(M,2),6"'(M,2) see Definition 2.3 (II~10) ]
< ]
e " " :1
‘.. support of f the set of points: {x: f(x) # 0} .
- :
!‘_» -
[ ;
]
i
-
:.1
N
A-2 .
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Appendix B. Physics Symbols

The following symbols are introduced in Chapter III and are J
summarized here for convenience, Page numbers in parentheses ,':
following the definitions indicate where the symbol was first used or g
defined. g
"
m particle rest mass (III-4) *
g
q particle charge (III-4) j
L !
3 T
c vacuum speed of light (III-4)
, €, absolute dielectric constant (III-8)
| © -
-‘_-(7. U absolute magnetic permeability of free space by
> (I11-8) N
]
@, cyclotron frequency (III-27) .
=
X
w5 plasma frequency (III-27) 3
)
E
o
1 (iy:jok) = (1’2’3)9 (2,3,1)9 or (39172) :—
€55 -1 (4,5,k) = (1,3,2), (2,1,3), or (3,1,2) ]
0 otherwise :
q
- 7
N | ul magnitude of vector (III-4) )
- 1
L | v microscopic veloeity vector (III-5) E‘j
N
N
N
&
]
-

A A
L2

-




n(x,t)

V(x,t)
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microscopic momentum vector (III-5)

number density (III-5)

macroscopic veloeity vector (III-5)

macroscopic momentum vector (III-5)

distritution function (III-5)

f(x,p,t)/n(x,t) n(x,t) > 0

(Page III-7)
0 n(x,t) =0
current density vector (III-6)
electric field vector (III-4)
magnetic field vestor (III-4)

pressure tensor (III-6)

transformation matrix (III-19)
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Appendix C. Completeness of M! (0O,R)

In Chapter IV the space M' (0,R)is defined as follows:

MP0,R) = L fxE] n g gy

- e

"f“MI(O,R) IILl(O,R)

It is asserted in that chapter that M' (0,R) is a Banach space and

this is now proven,

Theorem C,1

The space M' (0,R)is a Banach space,

Proof

It is obvious that M' (0,R) is a normed linear space. To show

compl eteness, let {gi} 1CM1 (0,R) be a Cauchy sequence. Defining

functions f, by

fi(X) = xgi(X) (0<x<R)

=)
it is clear that {fi} ,CL'(0,R) , But this sequence is Cauchy in

L' (0,R) since

c-1
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T, W, W W RO, T, T
- e S

ben-fallt o, ry = IxCen-g 0l 1t (0, 8)

|8n=8nljx? (0, &)

and, as {gi}olo is Cauchy, there exists an N for every €>0 such

that

"gm—gnuMl(O,R) € Vm,n > N

= |En-falir 0,5y < € vm,n > N

Since L!(0,R) is complete, the sequence {fi}T converges to an

element f in L!'(0,R). Let a function g be defined by
1
g(x) = ;f(x) (0<x<R)

Now geM!' (0,R) since

1

[e <]

.
(g.J,, then, converges to g since

The sequence 18

Nei-ellut co.ry = i)l o.ry = NEs~EllLi o, r)

and f.>f in the L' (0,R) norm. Thus, every Cauchy sequence in

M' (0,R) converges to an element in M' (0,R) .,
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Appendix D. A Three Degree-of-Freedom
Linear Model

As stated in the footnote on page III1-17, the linearization proc-
ess 1s 1n no way limited to a single degree-of-freedom model. By
applying the same techniques used in Chapter III to the system of
equations on pages III-20 and III-21, with the rigid rotor equilibrium
solution (equation 3.60), one can derive a linear model with the fol-

lowing form:

Sou(r) = Au(e) + g(t)

The symbol w(t) is given by

—:S-rl(g,t)—‘1
SV _(x,t)

Vg (z,t)
§v (x,t)
SE (x,t)
w(t) = §E4(x,t) ; r = (r,8,2)
§E_(r,t)
‘SBr(E_’t)

SBy(x,t)

S

The operator A is expressed in detail on the following page, and
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g(t) = L6 (ryu(e)
m

0 0 0 0 0 0 Ei(;,t)
1 0 0 0 ~-v9 -ur CES(r,t)
z 5t —
0 1 0o v 0 0 «"Ei(r,t)
-
m
0o 0 1 wr 0 0 5B (x,t)
r o€
uBe(r,t)
0 3B (r,t)
,(r

Note that the form of the differential equation above is identi-
cal to that of equation (3.71), the single degree-of-freedom case.

10
The vector w(t) is an element of a function space X = [ X, » where

i=1
each X, is an appropriately defined space of functions defined on a
subset of R’ The dimension of the space is now ten rather than

nine, since the perturbed radial magnetic field is identically zero in

the single degree-of-freedom case.
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equations 1s a speclal case of such a semigroup,) The semigroup point of view ,

allows the application of the rapidly maturing modern control theory of infin-
ite~dimensional systems.

An appropriate underlying Banach space is identified for a simple, but non- \

trivial, single degree of freedom model (the ®electrostatic approximation mod-

el"), and the associated one-parameter semigroup of linear operators is charac-

.erized, )
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